Tutorium 10

1 Die Adjungierte Abbildung

Definition. Seien V,W euklidisch (oder unitär) und $\Phi:V\to W$ linear. Eine Abbildung $\Phi^*:W\to V$ mit

$$\langle \Phi(v), w \rangle = \langle v, \Phi^*(w) \rangle \quad \forall v \in V, w \in W$$

heißt zu Φ adjungierte Abbildung.

Bemerkung. Φ^* ist bei Existenz notwendigerweise linear!

Seien $B = \{b_1, \ldots, b_n\}, C = \{c_1, \ldots, c_m\}$ ONBen von V bzw. W. Dann gilt:

$$\langle \Phi(b_i), b_i \rangle = \langle b_i, \Phi^*(b_i) \rangle = \overline{\langle \Phi^*(b_i), b_i \rangle}$$

und damit folgt unmittelbar:

Satz. Seien V,W euklidisch (oder unitär) und $\Phi:V\to W$ linear. Dann existiert die adjungierte Abbildung Φ^* , und gegeben ONBen B,C von V bzw. W gilt:

$$D_{CB}(\Phi) = (D_{BC}(\Phi^*))^*$$

 $\operatorname{mit} A^* := \overline{A^T}$

Korollar. Es gelten:

- (i) $\operatorname{Spec}(\Phi^*) = \overline{\operatorname{Spec}(\Phi)}$
- (ii) $(A+B)^* = A^* + B^*$
- (iii) $(\lambda A)^* = \overline{\lambda} A^*$
- (iv) $(AB)^* = B^*A^*$

(und genauso für die Endomorphismen!)

Aufgabe 1. Sei V unitär und $\Phi \in \text{End}(V)$. Zeigen Sie: Es existieren $\phi, \psi \in \text{End}(V)$ mit $\phi^* = \phi, \psi^* = -\psi$ und $\Phi = \phi + \psi$.

1

Lösung. Der übliche Trick tut es:

$$\phi := \frac{1}{2} \left(\Phi + \Phi^* \right)$$

$$\psi := \frac{1}{2} \left(\Phi - \Phi^* \right)$$

2 Normale Endomorphismen

Definition. Sei V euklidisch (oder unitär). Ein Endomorphismus $\Phi \in \operatorname{End}(V)$ mit

$$\Phi\Phi^* = \Phi^*\Phi$$

heißt normaler Endomorphismus. Eine Matrix $A \in \mathbb{R}^{n \times n}$ heißt normal wenn gilt:

$$AA^* = A^*A$$

Beispiel. Selbstadjungierte Endomorphismen ($\Phi^* = \Phi$), antiselbstadjungierte Endomorphismen ($\Phi^* = -\Phi$) und auch Isometrien ($\Phi^* = \Phi^{-1}$), denn:

$$\langle \Phi(x), y \rangle = \langle \Phi(x), \Phi(\Phi^{-1}(y)) \rangle = \langle x, \Phi^{-1}(y) \rangle$$

Lemma. Sei $\Phi \in \text{End}(V)$ normal. Dann gilt:

U Φ -invarianter UVR $\Rightarrow U^{\perp}$ Φ -invarianter UVR

Satz (Spektralsatz). Sei dim $V < \infty$ und $\Phi \in \text{End}(V)$ normal.

- (i) Ist V unitär, so existiert eine ONB aus EVen von Φ .
- (ii) Ist V euklidisch, so ist V orthogonale Summe aus ein- oder zweidimensionalen Φ -invarianten UVRen.

Satz (Matrizenform).

- (i) Sei $A\in\mathbb{C}^{n\times n}$ normal. Dann existiert eine Matrix $U\in U(n)$ so dass $U^{-1}AU$ eine Diagonalmatrix ist.
- (ii) Sei $A \in \mathbb{R}^{n \times n}$ normal. Dann existiert eine Matrix $O \in O(n)$ so dass $O^{-1}AO$ folgende Form hat:

$$\begin{pmatrix} \lambda_1 & & & & & & & \\ & \ddots & & & & & & \\ & & \lambda_k & & & & \\ & & & \lambda_k & & & \\ & & & a_1 & -b_1 & & \\ & & & b_1 & a_1 & & \\ & & & & \ddots & & \\ & & & & a_l & -b_l \\ & & & & b_l & a_l \end{pmatrix}$$

mit $\lambda_i, a_i, b_i \in \mathbb{R}, b_i \neq 0, k+2l = n$.

Aufgabe 2. Sei $A \in \mathbb{C}^{n \times n}$. Zeigen Sie:

(i) Gilt $A^2 = \pm I_n$, so ist A diagonalisierbar, aber i.A. nicht normal.

Beweis. (i) Annullierendes Polynom ist X^2-1 bzw. X^2+1 , das Minimalpolynom ist also in

$$\{X-1, X+1, (X-1)(X+1)\}$$
 bzw. $\{X-i, X+i, (X-i)(X+i)\}$

Also hat A Diagonalgestalt oder zwei EWe. Und als Gegenbeispiel findet man:

$$\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$$

denn es gilt:

$$\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

aber:

$$\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 2 & * \\ * & * \end{pmatrix} \neq \begin{pmatrix} 1 & * \\ * & * \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$$

3 Selbstadjungierte Endomorphismen

Definition. Sei V euklidisch (oder unitär). Ein Endomorphismus $\Phi \in \operatorname{End}(V)$ mit

$$\Phi = \Phi^*$$

heißt selbstadjungiert.

Lemma. Sei V euklidisch (oder unitär), $\Phi \in \text{End}(V)$ und B eine ONB von V. Dann gilt:

 Φ selbstadjungiert $\Leftrightarrow D_{BB}(\Phi) = D_{BB}(\Phi)^*$

Bemerkung. Sei Φ selbstadjungiert mit EW $\lambda \in \mathbb{C}$ und zugehörigem EV x. Dann gilt:

$$\lambda \langle x, x \rangle = \langle \Phi(x), x \rangle = \langle x, \Phi(x) \rangle = \overline{\lambda} \langle x, x \rangle$$

$$\Rightarrow \lambda \in \mathbb{R}$$

Damit hat das charakteristische Polynom von Φ , das über \mathbb{C} ja in Linearfaktoren zerfällt, nur reelle Nullstellen und so zerfällt es auch über \mathbb{R} in Linearfaktoren!

Satz (Spektralsatz). Sei V euklidisch (oder unitär) und dim $V<\infty$. $\Phi\in \mathrm{End}(V)$ ist genau dann selbstadjungiert wenn gilt:

es existiert eine ONB aus EVen von Φ und die EWe sind alle reell

Bemerkung. Dieser Satz gilt insbesondere für symmetrische <u>reelle</u> Matrizen (denn diese sind ja die Abbildungsmatrize von selbstadjungierten Endomorphismen).

Außerdem erhalten wir noch ein Positivitätskriterium:

Korollar. Eine symmetrische Matrix $A \in \mathbb{R}^{n \times n}$ ist genau dann positiv definit, wenn alle EWe positiv sind.

Aufgabe 3. Sei $V = C([-1,1],\mathbb{C})$ mit dem Skalarprodukt

$$\langle f, g \rangle := \int_{-1}^{1} f(x) \overline{g(x)} dx$$

Zeigen Sie, dass $\Phi \in \text{End}(V)$ definiert durch

$$\Phi(f)(x) := f(-x)$$

eine selbstadjungierte Isometrie ist.

Beweis. Es gelten:

$$\langle \Phi(f),g\rangle = \int\limits_{-1}^{1} f(-x)\overline{g(x)}dx = -\int\limits_{1}^{-1} f(y)\overline{g(-y)}dy = \int\limits_{-1}^{1} f(y)\overline{g(-y)}dy = \langle f,\Phi(g)\rangle$$

bzw.

$$\langle \Phi(f), \Phi(g) \rangle = \int_{-1}^{1} f(-x) \overline{g(-x)} dx = -\int_{1}^{-1} f(y) \overline{g(y)} dy = \int_{-1}^{1} f(y) \overline{g(y)} dy = \langle f, g \rangle$$

Aufgabe 4. Sei V euklidisch (oder unitär), dim V = n und $\Phi \in \text{End}(V)$ selbstadjungiert und nilpotent. Zeigen Sie: $\Phi = 0$.

Beweis. Φ selbstadjungiert $\Rightarrow \exists$ ONB B mit $D_{BB}(\Phi) = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.

 Φ nilpotent $\Rightarrow \exists k \in \mathbb{N} \text{ mit } 0 = D_{BB}(\Phi)^k = \operatorname{diag}(\lambda_1^k, \dots, \lambda_n^k).$

Also
$$\lambda_1 = \ldots = \lambda_n = 0$$
 und somit $\Phi = 0$.