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Abstract. In this text we summarize some of the results of [Nee02, Sec.
II]. More precisely, we will first show in Section 2 that GLpHq is contractible
for infinite-dimensional H; this is Kuiper’s theorem. We then use this result
in Section 3 in order to prove that several other classical operator groups
are contractible. In Section 4 we recall some results of Palais regarding the
topology of infinite-dimensional vector spaces; these are then used to compute
the homotopy groups of infinite matrix groups (in Sec. 5) and of congruence
subgroups for the Schatten ideals BppHq (in Sec. 6).

Notation. We consider real and complex Hilbert spaces ([Nee02] also handles the
quaternionic case). The Banach spaces of bounded and compact operators on H
are denoted by BpHq and KpHq, respectively, and the space of Hermitian (i.e. self-
adjoint) operators is denoted by HermpHq. We write GLpHq and UpHq for the
invertible and unitary operators, respectively.

Linear Banach-Lie groups. Recall that both GLpHq and UpHq are Banach-Lie
groups. Their respective Lie algebras are given by

glpHq :“ BpHq

upHq :“ tX P glpHq : X˚ “ ´Xu

(cf. [Nee06]). Furthermore we have a polar decomposition implemented by the
diffeomorphism

UpHq ˆHermpHq Ñ GLpHq, pu,Xq ÞÑ ueX

In particular, UpHq is a deformation retract of GLpHq.

1. Kuiper’s theorem

In this section we want to prove the following theorem.

Theorem 1 (Kuiper’s theorem). GLpHq is contractible for every infinite-dimensional
Hilbert space H.

The proof for separable H can be found in [Kui65]; thus we will only consider the
inseparable case. The following theorem due to Palais shows that in fact it will be
sufficient to show that all maps Sk Ñ GLpHq are homotopic to a constant map.

Theorem 2. A metrizable topological manifold modeled over a sequentially com-
plete locally convex space is contractible if and only if all homotopy groups vanish.

Proof. [Pal66, Cor. to Thm. 15]. �

The following lemma allows us to decompose any Hilbert space into the direct sum
of copies of l2; this will turn out to be rather convenient in what follows.
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Lemma 3. Let H be a Hilbert space, M Ď BpHq a separable set of operators. Then
there exists an orthogonal decomposition

H –

K
à

Hj

into closed, separable, M -invariant subspaces pHjqjPJ .

If H is infinite-dimensional, the Hi can be chosen to be infinite-dimensional as well,
so that

H – l2pJ, l2pN,Kqq

Proof. (1) We may assume w.l.o.g. that M “M˚ Q 1. Zorn’s lemma yields a max-
imal set pHjqjPJ of non-zero, pairwise orthogonal, closed, separable, M -invariant
subspaces of H. Let H0 :“

ř

Hj .

Assume H0 ‰ H. Since H0 is M p˚q-invariant, HK0 is M p˚q-invariant. Thus for
any 0 ‰ v P HK0 the closed, separable, M -invariant subspace H8 :“ spanpMvq is
orthogonal to the Hj , contradicting maximality.

(2) Now assume that H is infinite-dimensional. Consider

J0 :“ tj P J : dimHj ă 8u

If J0 is finite, there is some j P JzJ0 and we can simply append the finitely-many
finite-dimensional subspaces to Hj .

If J0 is infinite, then #J0 “ #pJ0 ˆ Nq and J0 can be decomposed into (infinitely
many) countably infinite sets.. Thus we can replace the finite summands by infinite-
dimensional separable ones. �

The following proposition concludes the proof of Kuiper’s theorem.

Proposition 4. If X is a separable topological space and H is an inseparable Hilbert
space, then every continuous map f : X Ñ GLpHq is homotopic to a constant map.

Proof. (1) The main ingredient of the proof is the following “trick”: For every
x P GLpHq, we have a path

r0, 1s Ñ GLpH2q, t ÞÑ

ˆ

1 0
tpx´1 ´ 1q 1

˙ˆ

1 t
0 1

˙ˆ

1 0
tpx´ 1q 1

˙ˆ

1 ´tx´1

0 1

˙

connecting 1 and diagpx, x´1q.

(2) Since fpXq is a separable set of operators, the lemma yields

H – l2pJ, l2pN,Kqq

such that the operators act diagonally (on the “outer” l2).

Since H is inseparable, the index set J must be (uncountably) infinite. Thus we
can decompose J “ J1 9YJ2 into disjoint sets of equal cardinality #J “ #J1 “ #J2
which in turn leads to an orthogonal decomposition H – H ‘H which fpXq acts
diagonally on. Thus we can regard f as a map

f “ diagpg1, g2q
p1q
» diagpg1g2, 1q “: diagpg, 1q “: f̃

(3) We need to create some more space before we can finish the proof. Since
#J “ #pJ ˆ Nq, we can decompose the (second summand) H further as follows:

H – H ‘H – H ‘ l2pN, Hq
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In this picture, f̃ corresponds to the map

f̃ “ diagpg, 1, 1, . . .q “ diagpg, 1, 1, . . .q diagp1, 1, 1, . . .q
loooooooomoooooooon

p1q
» diagpg´1,g,g´1,...q

» diagp1, g, g´1, . . .q “ diagp1, g, g´1, . . .q diagp1, 1, 1, . . .q
loooooooomoooooooon

p1q
» diagp1,g´1,g,g´1,...q

» 1

�

Corollary 5. UpHq is contractible for every infinite-dimensional Hilbert space H.

2. Contractibility of other classical linear Lie groups

In this section H will denote a complex Hilbert space with a conjugation I, i.e. an
antilinear isometry with I2 “ 1.

Then we can consider the groups

GLpH, Iq :“ tg P GLpHq : g´1 “ Ig˚I´1u

UpH, Iq :“ GLpH, Iq XUpHq

Example 6. Complex conjugation ¯̈ is a conjugation in L2 :“ L2pΩ,Cq. In that
case,

GLpL2,¯̈q “ tg P GLpL2q : g´1f “ g˚f p@f P L2qu

UpL2,¯̈q “ tg P UpL2q : g˚f “ g˚f p@f P L2qu

For instance, f ÞÑ ´f P UpL2,¯̈q.

It follows from Kuiper’s theorem that these groups are contractible as well. More
precisely, we have the following results.

Proposition 7. We have

UpH, Iq – UpHI
Rq

where HI :“ tx P H : Ix “ xu.

In particular, UpH, Iq is contractible for infinite-dimensional H.

Proof. Consider the continuous group homomorphism

UpH, Iq Ñ UpHI
Rq, u ÞÑ u|HI

which is well-defined since every element in UpH, Iq commutes with I. The relation
H “ HI ‘ iHI now shows how to construct a continuous inverse. �

Proposition 8. We have a polar decomposition

GLpH, Iq – UpH, Iq ˆHermpH, Iq

with HermpH, Iq :“ tX P HermpHq : X “ ´IX˚I´1u.

Thus GLpH, Iq is contractible for infinite-dimensional H.

Proof. Let

τ P AutpGLpHqq, g ÞÑ Ipg˚q´1I´1

τg P AutpglpHqq, X ÞÑ ´IX˚I´1

Then GLpH, Iq “ GLpHqτ and τpgq “ τpuqeτgpXq is the unique polar decomposition
of g “ ueX P GLpHq. Thus τpgq “ g if and only if u P UpH, Iq and x P HermpH, Iq.
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Consequently, the polar decomposition in GLpHq restricts to the desired polar
decomposition for GLpH, Iq, and contractibility follows from the preceding lemma.

�

See [Nee02, Sec. II.2] for a treatment of other classical linear Lie groups such as
those arising from anticonjugations (I2 “ ´1).

3. Topology of infinite-dimensional vector spaces

The following results are also due to Palais.

Theorem 9. (i) Let X be a locally convex topological vector space and E Ď X
a dense subspace endowed with the direct limit topology with respect to the
finite-dimensional subspaces. If U Ď X is an open subset and U X E is
considered with the subspace topology in E, then the continuous inclusion
U X E ãÑ U is a weak homotopy equivalence.

(ii) Let f : X Ñ Y be a morphism between metrizable locally convex topological
vector spaces and U Ď Y open. Then f |f´1pUq : f´1pUq Ñ U is a homotopy
equivalence.

Proof. [Pal66, Thm. 12 and 16]. �

Lemma 10. Let E be a real vector space endowed with the direct limit topology
with respect to its finite-dimensional subspaces. Then the following assertions hold:

(i) Each linearly independent subset is closed and discrete.
(ii) Each compact subset is contained in a finite-dimensional subspace.
(iii) For each subset U Ď E and u0 P U we have

πkpU, u0q – lim
FPF

πkpU X F, u0q

where F denotes the directed set of all finite-dimensional spaces F Ď E
containing u.

Proof. (i) Every linearly-independent subset S Ď E is closed since its intersection
with every finite-dimensional subspace is closed (even finite). By the same argu-
ment, every subset of S is closed; hence S is discrete.

(ii) Suppose C Ď E is compact. Take a maximal linearly independent subset
S Ď C. By (i), S is compact and discrete, hence finite. Thus C is contained in the
finite-dimensional subspace spanS.

(iii) By (ii), the image of any continuous map pSk, 1q Ñ pU, u0q is contained in a
finite-dimensional subspace F Ď E. It follows that the natural homomorphism

lim
FPF

πkpU X F, u0q Ñ πkpU, u0q

is surjective. The same argument also shows injectivity since every homotopy has
compact domain. �

4. Homotopy groups of the stable matrix groups

The matrix algebra with index set J is defined as

MpJ,Kq :“ tpmi,jq P KJˆJ : only finitely many mi,j ‰ 0u

It is unital if and only if J is finite. The group of invertible matrices is then given
by

GLpJ,Kq :“ p1`MpJ,Kqqˆ



HOMOTOPY GROUPS OF OPERATOR GROUPS 5

For F Ď J we have natural identifications MpF,Kq Ď MpJ,Kq and GLpF,Kq Ď
GLpJ,Kq. It follows that

MpJ,Kq “ lim
ÝÑ

MpF,Kq
GLpJ,Kq “ lim

ÝÑ
GLpF,Kq

This holds even if we only consider finite subsets F Ď J , which is what we will do
now. Then there are natural topologies on the MpF,Kq and GLpF,Kq. Thus we
endow MpJ,Kq and GLpJ,Kq with the respective final topologies so that the above
direct limits can also be understood in the topological sense.

Note that in general multiplication will not be (jointly) continuous (but left- and
right- multiplication will always be).

Proposition 11. For every k P N0 we have

πkpMpJ,Kqq “ lim
ÝÑ

πkpMpF,Kqq
πkpGLpJ,Kqq “ lim

ÝÑ
πkpGLpF,Kqq

Proof. This follows from Lemma 10 (iii). �

Note that we recover the familiar matrix algebras and groups for J “ t1, . . . , nu
(together with their natural topology).

Proposition 12. Every injection N ãÑ J induces a weak homotopy equivalence
GLpN,Kq ãÑ GLpJ,Kq.

Proof. We can assume w.l.o.g. that N Ď J .

(1) Suppose F, F̃ Ď J are finite disjoint subsets with equal cardinality. Then using
the same “trick” as in the proof of Proposition 4 we see that every continuous map
X Ñ GLpF,Kq is homotopic in GLpJ,Kq to a continuous map X Ñ GLpF̃ ,Kq.
(2) Surjectivity: Let rf s P πkpGLpJ,Kqq. In view of Lemma 10 (ii) the image of f
is contained in some GLpF,Kq for finite F Ď J . But by part (1) we can homotope
f to a map with image in GLpN,Kq; this is a preimage.

(3) Injectivity: Let rf s P kerpπkpinclqq, i.e. there is a homotopy H between f and
the constant map 1 in GLpJ,Kq. Again by compactness, the image ofH is contained
in some GLpF,Kq for finite F Ď J . Thus it follows from GLpF,Kq – GLp#F,Kq Ď
GLpN,Kq that f is nullhomotopic already in GLpN,Kq. �

Corollary 13. For every infinite J and k P N0 we have

πkpGLpN,Kqq – πkpGLpJ,Kqq

The following classical results by Bott [Bot59] describe the homotopy groups of
GLpN,Kq. In view of the preceding corollary they hold for arbitrary stable matrix
groups GLpJ,Kq, J infinite.

Theorem 14 (Stability). Let k P N. Then for n P N large enough the maps
GLpn,Kq ãÑ GLpn` 1,Kq induce isomorphisms

πkpGLpn,Kqq –Ñ πkpGLpn` 1,Kqq

(the homotopy groups “stabilize”) so that

πkpGLpN,Kqq – πkpGLpn,Kqq
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Sketch of proof. Let d :“ dimK. The transitive action

Upn` 1,Kq ü Sdpn`1q´1

leads to a locally trivial principal bundle

Upn,Kq ãÑ Upn` 1,Kq Ñ Sdpn`1q´1

The long exact sequence for this fibration is given by

. . .Ñ πk`1pSdpn`1q´1q Ñ πkpUpn,Kqq ÝÑ πkpUpn` 1,Kqq Ñ πkpSdpn`1q´1q Ñ . . .

and the fact that the outer homotopy groups vanish for k`1 ă dpn`1q´1 implies
the first claim.

The second assertion now follows from 11. �

Theorem 15 (Bott Periodicity). We have the following periodicity relations

πkpGLpN,Cqq – πk`2pGLpN,Cqq
πkpGLpN,Rqq – πk`8pGLpN,Rqq

so that we can determine the homotopy groups of GLpN,Kq from the following table:

GLpN,Rq GLpN,Cq
π0 Z{2Z 0
π1 Z{2Z Z
π2 0 0
π3 Z Z
π4 0 0
π5 0 Z
π6 0 0
π7 Z Z

5. Homotopy groups of the congruence subgroups of the Schatten
ideals

In this section, H is again a K-Hilbert space. The Schatten ideals are the Banach
spaces defined by

BppHq :“ tx P BpHq : ||x||p ă 8u

||x||p :“
´

trppx˚xqp{2q
¯1{p

for p P r1,8q. We also define

B8pHq :“ KpHq

|| ¨ ||8 :“ || ¨ ||

They have the following properties.

Proposition 16 (cf. my Zwischentreffen talk).

(i) The BppHq are ideals in BpHq.
(ii) We have

BfinpHq Ď B1pHq Ď BppHq Ď BqpHq Ď B8pHq Ď BpHq

for 1 ď p ď q ď 8.
(iii) For any x “

ř

ajx¨, ejyfj P B8pHq with ONB pejq, pfjq we have

||x||p “ ||pajq||lp

(iv) If pejq is any ONB of H, the set of projections tx¨, eiyeju is total in each
of the spaces BppHq, p P r1,8s.
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The congruence subgroups of the Schatten ideals and the corresponding unitaries
are the Banach-Lie groups given by

GLppHq :“ GLpHq X p1` BppHqq

UppHq :“ GLppHq XUpHq

Their Lie algebras are given by

glppHq :“ BppHq

uppHq :“ BppHq X upHq

respectively. Oonce again we have a polar decomposition

GLppHq – UppHq ˆHermppHq

with HermppHq :“ HermpHq X BppHq (cf. [Nee00, Def. IV.20, Prop. A.4]).

Theorem 17. Let H be an infinite-dimensional K-Hilbert space and p P r1,8s.
Then the following assertions hold:

(i) πkpGLppHqq – πkpGLpN,Kqq
(ii) The inclusion map GLppHsq ãÑ GLppHq is a weak homotopy equivalence

for every infinite-dimensional separable subspace Hs Ď H.
(iii) The inclusion map GLppHq ãÑ GLqpHq is a homotopy equivalence for

p ď q.

Proof. (i) Fix an ONB pejq. By the previous proposition, B0pHq :“ spantx¨, eiyeju Ď
BppHq is dense. We endow B0pHq with the direct limit topology with respect to
the directed set of its finite-dimensional subspaces.

Then there is a natural isomorphism B0pHq – MpJ,Kq by means of the basis
pejq which restricts to the natural identification of pGLppHq ´ 1q X B0pHq with
GLpJ,Kq ´ 1 if the former endowed with the subspace topology of B0pHq.

On the other hand Theorem 9 (i) yields that pGLppHq´1qXB0pHq and GLppHq´1
are weakly homotopy equivalent – again if the former is endowed with the subspace
topology of B0pHq.

Consequently we get a weak homotopy equivalence between GLppHq and GLpJ,Kq,
the latter group in turn being homotopy equivalent to GLpN,Kq by Corollary 13.

(ii) The claim follows from the commutative diagram.

GLpN,Kq Ă
w-»
(i)
- GLppHsq

GLpJ,Kq

w-» 12
?

X

Ă
w-»
(i)
- GLppHq

?

X

(iii) BppHq Ď BqpHq is a dense subset; that is, the inclusion BppHq ãÑ BqpHq has
dense range. Theorem 9 (ii) now shows that the inclusion GLppHq´1 ãÑ GLqpHq´1
is a homotopy equivalence. �

Finally, we want to compute the homotopy groups of the groups

GLppH, Iq :“ GLppHq XGLpH, Iq

UppH, Iq :“ UppHq XGLpH, Iq

Observe that we have a polar decomposition

GLppH, Iq – UppH, Iq ˆHermppH, Iq
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with HermppH, Iq :“ HermppHq X HermpH, Iq (inherited from the groups we have
intersected).

Corollary 18. Let H be a infinite-dimensional complex Hilbert space with conju-
gation I, and p P r1,8s. Then the following assertions hold:

(i) πkpGLppH, Iqq – πkpGLpN,Rqq
(ii) The inclusion map GLppHs, I|Hs

q ãÑ GLppH, Iq is a weak homotopy equiv-
alence for every infinite-dimensional separable I-invariant subspace Hs Ď

H.
(iii) The inclusion map GLppH, Iq ãÑ GLqpH, Iq is a homotopy equivalence for

p ď q.

Proof. Using polar decomposition we get

GLppH, Iq » UppH, Iq “ UppHq XUpH, Iq

7
–UppHRq XUpHI

Rq “ UppH
I
Rq » GLppH

I
Rq

Thus all three claims follow from the corresponding assertions of Theorem 17. �
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