HOMOTOPY GROUPS OF OPERATOR GROUPS

MICHAEL WALTER

ABSTRACT. In this text we summarize some of the results of [Nee02, Sec. II]. More precisely, we will first show in Section 2 that GL(H) is contractible for infinite-dimensional H; this is Kuiper's theorem. We then use this result in Section 3 in order to prove that several other classical operator groups are contractible. In Section 4 we recall some results of Palais regarding the topology of infinite-dimensional vector spaces; these are then used to compute the homotopy groups of infinite matrix groups (in Sec. 5) and of congruence subgroups for the Schatten ideals $B_p(H)$ (in Sec. 6).

Notation. We consider real and complex Hilbert spaces ([Nee02] also handles the quaternionic case). The Banach spaces of bounded and compact operators on H are denoted by B(H) and K(H), respectively, and the space of Hermitian (i.e. self-adjoint) operators is denoted by Herm(H). We write GL(H) and U(H) for the invertible and unitary operators, respectively.

Linear Banach-Lie groups. Recall that both GL(H) and U(H) are *Banach-Lie groups*. Their respective Lie algebras are given by

$$\mathfrak{gl}(H) := \mathcal{B}(H)$$
$$\mathfrak{u}(H) := \{X \in \mathfrak{gl}(H) : X^* = -X\}$$

(cf. [Nee06]). Furthermore we have a *polar decomposition* implemented by the diffeomorphism

 $U(H) \times Herm(H) \rightarrow GL(H), (u, X) \mapsto ue^X$

In particular, U(H) is a deformation retract of GL(H).

1. Kuiper's Theorem

In this section we want to prove the following theorem.

Theorem 1 (Kuiper's theorem). GL(H) is contractible for every infinite-dimensional Hilbert space H.

The proof for separable H can be found in [Kui65]; thus we will only consider the inseparable case. The following theorem due to Palais shows that in fact it will be sufficient to show that all maps $\mathbb{S}^k \to \mathrm{GL}(H)$ are homotopic to a constant map.

Theorem 2. A metrizable topological manifold modeled over a sequentially complete locally convex space is contractible if and only if all homotopy groups vanish.

Proof. [Pal66, Cor. to Thm. 15].

The following lemma allows us to decompose any Hilbert space into the direct sum of copies of l^2 ; this will turn out to be rather convenient in what follows.

Lemma 3. Let H be a Hilbert space, $M \subseteq B(H)$ a separable set of operators. Then there exists an orthogonal decomposition

$$H \cong \bigoplus^{\perp} H_j$$

into closed, separable, M-invariant subspaces $(H_j)_{j \in J}$.

If H is infinite-dimensional, the H_i can be chosen to be infinite-dimensional as well, so that

$$H \cong l^2(J, l^2(\mathbb{N}, \mathbb{K}))$$

Proof. (1) We may assume w.l.o.g. that $M = M^* \ni 1$. Zorn's lemma yields a maximal set $(H_j)_{j\in J}$ of non-zero, pairwise orthogonal, closed, separable, *M*-invariant subspaces of *H*. Let $H_0 := \overline{\sum H_j}$.

Assume $H_0 \neq H$. Since H_0 is $M^{(*)}$ -invariant, H_0^{\perp} is $M^{(*)}$ -invariant. Thus for any $0 \neq v \in H_0^{\perp}$ the closed, separable, *M*-invariant subspace $H_{\infty} := \overline{\operatorname{span}(Mv)}$ is orthogonal to the H_j , contradicting maximality.

(2) Now assume that H is infinite-dimensional. Consider

$$J_0 := \{ j \in J : \dim H_j < \infty \}$$

If J_0 is finite, there is some $j \in J \setminus J_0$ and we can simply append the finitely-many finite-dimensional subspaces to H_j .

If J_0 is infinite, then $\#J_0 = \#(J_0 \times \mathbb{N})$ and J_0 can be decomposed into (infinitely many) countably infinite sets. Thus we can replace the finite summands by infinite-dimensional separable ones.

The following proposition concludes the proof of Kuiper's theorem.

Proposition 4. If X is a separable topological space and H is an inseparable Hilbert space, then every continuous map $f : X \to GL(H)$ is homotopic to a constant map.

Proof. (1) The main ingredient of the proof is the following "trick": For every $x \in GL(H)$, we have a path

$$[0,1] \to \mathrm{GL}(H^2), t \mapsto \begin{pmatrix} 1 & 0 \\ t(x^{-1}-1) & 1 \end{pmatrix} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ t(x-1) & 1 \end{pmatrix} \begin{pmatrix} 1 & -tx^{-1} \\ 0 & 1 \end{pmatrix}$$

connecting 1 and diag (x, x^{-1}) .

(2) Since f(X) is a separable set of operators, the lemma yields

(1)

$$H \cong l^2(J, l^2(\mathbb{N}, \mathbb{K}))$$

such that the operators act diagonally (on the "outer" l^2).

Since *H* is inseparable, the index set *J* must be (uncountably) infinite. Thus we can decompose $J = J_1 \dot{\cup} J_2$ into disjoint sets of equal cardinality $\#J = \#J_1 = \#J_2$ which in turn leads to an orthogonal decomposition $H \cong H \oplus H$ which f(X) acts diagonally on. Thus we can regard f as a map

$$f = \operatorname{diag}(g_1, g_2) \stackrel{(1)}{\simeq} \operatorname{diag}(g_1g_2, 1) =: \operatorname{diag}(g, 1) =: \tilde{f}$$

(3) We need to create some more space before we can finish the proof. Since $\#J = \#(J \times \mathbb{N})$, we can decompose the (second summand) *H* further as follows:

$$H \cong H \oplus H \cong H \oplus l^2(\mathbb{N}, H)$$

In this picture, \tilde{f} corresponds to the map

$$\begin{split} \tilde{f} &= \text{diag}(g, 1, 1, \ldots) = \text{diag}(g, 1, 1, \ldots) \underbrace{\text{diag}(1, 1, 1, \ldots)}_{\stackrel{(1)}{\simeq} \text{diag}(g^{-1}, g, g^{-1}, \ldots)} \\ &\simeq \text{diag}(1, g, g^{-1}, \ldots) = \text{diag}(1, g, g^{-1}, \ldots) \underbrace{\text{diag}(1, 1, 1, \ldots)}_{\stackrel{(1)}{\simeq} \text{diag}(1, g^{-1}, g, g^{-1}, \ldots)} \simeq 1 \end{split}$$

Corollary 5. U(H) is contractible for every infinite-dimensional Hilbert space H.

2. Contractibility of other classical linear Lie groups

In this section H will denote a *complex* Hilbert space with a *conjugation* I, i.e. an antilinear isometry with $I^2 = 1$.

Then we can consider the groups

$$GL(H, I) := \{g \in GL(H) : g^{-1} = Ig^*I^{-1}\}$$
$$U(H, I) := GL(H, I) \cap U(H)$$

Example 6. Complex conjugation $\overline{\cdot}$ is a conjugation in $L^2 := L^2(\Omega, \mathbb{C})$. In that case,

$$\begin{aligned} \operatorname{GL}(L^2,\bar{\cdot}) &= \{g \in \operatorname{GL}(L^2) : g^{-1}f = g^*\bar{f} \quad (\forall f \in L^2)\} \\ \operatorname{U}(L^2,\bar{\cdot}) &= \{g \in \operatorname{U}(L^2) : \overline{g^*f} = g^*\bar{f} \quad (\forall f \in L^2)\} \end{aligned}$$

For instance, $f \mapsto -f \in U(L^2, \overline{\cdot})$.

It follows from Kuiper's theorem that these groups are contractible as well. More precisely, we have the following results.

Proposition 7. We have

$$\mathrm{U}(H,I)\cong\mathrm{U}(H^I_{\mathbb{R}})$$

where $H^{I} := \{x \in H : Ix = x\}.$

In particular, U(H, I) is contractible for infinite-dimensional H.

Proof. Consider the continuous group homomorphism

$$\mathrm{U}(H,I) \to \mathrm{U}(H^I_{\mathbb{R}}), u \mapsto u|_{H^I}$$

which is well-defined since every element in U(H, I) commutes with I. The relation $H = H^I \oplus i H^I$ now shows how to construct a continuous inverse.

Proposition 8. We have a polar decomposition

$$\operatorname{GL}(H, I) \cong \operatorname{U}(H, I) \times \operatorname{Herm}(H, I)$$

with $\operatorname{Herm}(H, I) := \{X \in \operatorname{Herm}(H) : X = -IX^*I^{-1}\}.$

Thus GL(H, I) is contractible for infinite-dimensional H.

Proof. Let

$$\tau \in \operatorname{Aut}(\operatorname{GL}(H)), g \mapsto I(g^*)^{-1}I^{-1}$$
$$\tau_{\mathfrak{a}} \in \operatorname{Aut}(\mathfrak{al}(H)), X \mapsto -IX^*I^{-1}$$

Then $\operatorname{GL}(H, I) = \operatorname{GL}(H)^{\tau}$ and $\tau(g) = \tau(u)e^{\tau_{\mathfrak{g}}(X)}$ is the *unique* polar decomposition of $g = ue^X \in \operatorname{GL}(H)$. Thus $\tau(g) = g$ if and only if $u \in \operatorname{U}(H, I)$ and $x \in \operatorname{Herm}(H, I)$.

Consequently, the polar decomposition in GL(H) restricts to the desired polar decomposition for GL(H, I), and contractibility follows from the preceding lemma.

See [Nee02, Sec. II.2] for a treatment of other classical linear Lie groups such as those arising from *anti*conjugations $(I^2 = -1)$.

3. TOPOLOGY OF INFINITE-DIMENSIONAL VECTOR SPACES

The following results are also due to Palais.

- **Theorem 9.** (i) Let X be a locally convex topological vector space and $E \subseteq X$ a dense subspace endowed with the direct limit topology with respect to the finite-dimensional subspaces. If $U \subseteq X$ is an open subset and $U \cap E$ is considered with the subspace topology in E, then the continuous inclusion $U \cap E \hookrightarrow U$ is a weak homotopy equivalence.
 - (ii) Let $f: X \to Y$ be a morphism between metrizable locally convex topological vector spaces and $U \subseteq Y$ open. Then $f|_{f^{-1}(U)}: f^{-1}(U) \to U$ is a homotopy equivalence.

Proof. [Pal66, Thm. 12 and 16].

Lemma 10. Let E be a real vector space endowed with the direct limit topology with respect to its finite-dimensional subspaces. Then the following assertions hold:

- (i) Each linearly independent subset is closed and discrete.
- (ii) Each compact subset is contained in a finite-dimensional subspace.
- (iii) For each subset $U \subseteq E$ and $u_0 \in U$ we have

$$\pi_k(U, u_0) \cong \lim_{E \subset \mathcal{T}} \pi_k(U \cap F, u_0)$$

where \mathcal{F} denotes the directed set of all finite-dimensional spaces $F \subseteq E$ containing u.

Proof. (i) Every linearly-independent subset $S \subseteq E$ is closed since its intersection with every finite-dimensional subspace is closed (even finite). By the same argument, every subset of S is closed; hence S is discrete.

(ii) Suppose $C \subseteq E$ is compact. Take a maximal linearly independent subset $S \subseteq C$. By (i), S is compact and discrete, hence finite. Thus C is contained in the finite-dimensional subspace span S.

(iii) By (ii), the image of any continuous map $(\mathbb{S}^k, 1) \to (U, u_0)$ is contained in a finite-dimensional subspace $F \subseteq E$. It follows that the natural homomorphism

$$\lim_{F \in \mathcal{F}} \pi_k(U \cap F, u_0) \to \pi_k(U, u_0)$$

is surjective. The same argument also shows injectivity since every homotopy has compact domain. $\hfill \Box$

4. Homotopy groups of the stable matrix groups

The matrix algebra with index set J is defined as

 $\mathbf{M}(J, \mathbb{K}) := \{ (m_{i,j}) \in \mathbb{K}^{J \times J} : \text{ only finitely many } m_{i,j} \neq 0 \}$

It is unital if and only if J is finite. The group of invertible matrices is then given by

$$\operatorname{GL}(J,\mathbb{K}) := (1 + \operatorname{M}(J,\mathbb{K}))^{\times}$$

For $F \subseteq J$ we have natural identifications $M(F, \mathbb{K}) \subseteq M(J, \mathbb{K})$ and $GL(F, \mathbb{K}) \subseteq GL(J, \mathbb{K})$. It follows that

$$\begin{split} \mathbf{M}(J,\mathbb{K}) &= \varinjlim \mathbf{M}(F,\mathbb{K})\\ \mathbf{GL}(J,\mathbb{K}) &= \varinjlim \mathbf{GL}(F,\mathbb{K}) \end{split}$$

This holds even if we only consider *finite* subsets $F \subseteq J$, which is what we will do now. Then there are natural topologies on the $M(F, \mathbb{K})$ and $GL(F, \mathbb{K})$. Thus we endow $M(J, \mathbb{K})$ and $GL(J, \mathbb{K})$ with the respective final topologies so that the above direct limits can also be understood in the topological sense.

Note that in general multiplication will *not* be (jointly) continuous (but left- and right- multiplication will always be).

Proposition 11. For every $k \in \mathbb{N}_0$ we have

$$\pi_k(\mathcal{M}(J,\mathbb{K})) = \varinjlim \pi_k(\mathcal{M}(F,\mathbb{K}))$$
$$\pi_k(\mathcal{GL}(J,\mathbb{K})) = \varinjlim \pi_k(\mathcal{GL}(F,\mathbb{K}))$$

Proof. This follows from Lemma 10 (iii).

Note that we recover the familiar matrix algebras and groups for $J = \{1, ..., n\}$ (together with their natural topology).

Proposition 12. Every injection $\mathbb{N} \hookrightarrow J$ induces a weak homotopy equivalence $\operatorname{GL}(\mathbb{N}, \mathbb{K}) \hookrightarrow \operatorname{GL}(J, \mathbb{K}).$

Proof. We can assume w.l.o.g. that $\mathbb{N} \subseteq J$.

(1) Suppose $F, \tilde{F} \subseteq J$ are finite disjoint subsets with equal cardinality. Then using the same "trick" as in the proof of Proposition 4 we see that every continuous map $X \to \operatorname{GL}(F, \mathbb{K})$ is homotopic in $\operatorname{GL}(J, \mathbb{K})$ to a continuous map $X \to \operatorname{GL}(\tilde{F}, \mathbb{K})$.

(2) Surjectivity: Let $[f] \in \pi_k(\operatorname{GL}(J, \mathbb{K}))$. In view of Lemma 10 (ii) the image of f is contained in some $\operatorname{GL}(F, \mathbb{K})$ for finite $F \subseteq J$. But by part (1) we can homotope f to a map with image in $\operatorname{GL}(\mathbb{N}, \mathbb{K})$; this is a preimage.

(3) Injectivity: Let $[f] \in \ker(\pi_k(\operatorname{incl}))$, i.e. there is a homotopy H between f and the constant map 1 in $\operatorname{GL}(J, \mathbb{K})$. Again by compactness, the image of H is contained in some $\operatorname{GL}(F, \mathbb{K})$ for finite $F \subseteq J$. Thus it follows from $\operatorname{GL}(F, \mathbb{K}) \cong \operatorname{GL}(\#F, \mathbb{K}) \subseteq \operatorname{GL}(\mathbb{N}, \mathbb{K})$ that f is nullhomotopic already in $\operatorname{GL}(\mathbb{N}, \mathbb{K})$. \Box

Corollary 13. For every infinite J and $k \in \mathbb{N}_0$ we have

$$\pi_k(\operatorname{GL}(\mathbb{N},\mathbb{K})) \cong \pi_k(\operatorname{GL}(J,\mathbb{K}))$$

The following classical results by Bott [Bot59] describe the homotopy groups of $\operatorname{GL}(\mathbb{N},\mathbb{K})$. In view of the preceding corollary they hold for arbitrary stable matrix groups $\operatorname{GL}(J,\mathbb{K})$, J infinite.

Theorem 14 (Stability). Let $k \in \mathbb{N}$. Then for $n \in \mathbb{N}$ large enough the maps $GL(n, \mathbb{K}) \hookrightarrow GL(n + 1, \mathbb{K})$ induce isomorphisms

$$\pi_k(\operatorname{GL}(n,\mathbb{K})) \xrightarrow{\cong} \pi_k(\operatorname{GL}(n+1,\mathbb{K}))$$

(the homotopy groups "stabilize") so that

$$\pi_k(\operatorname{GL}(\mathbb{N},\mathbb{K})) \cong \pi_k(\operatorname{GL}(n,\mathbb{K}))$$

Sketch of proof. Let $d := \dim \mathbb{K}$. The transitive action

$$U(n+1,\mathbb{K}) \subseteq \mathbb{S}^{d(n+1)-1}$$

leads to a locally trivial principal bundle

$$\mathrm{U}(n,\mathbb{K}) \hookrightarrow \mathrm{U}(n+1,\mathbb{K}) \to \mathbb{S}^{d(n+1)-1}$$

The long exact sequence for this fibration is given by

$$\dots \to \pi_{k+1}(\mathbb{S}^{d(n+1)-1}) \to \pi_k(\mathbb{U}(n,\mathbb{K})) \longrightarrow \pi_k(\mathbb{U}(n+1,\mathbb{K})) \to \pi_k(\mathbb{S}^{d(n+1)-1}) \to \dots$$

and the fact that the outer homotopy groups vanish for k+1 < d(n+1)-1 implies the first claim.

The second assertion now follows from 11.

Theorem 15 (Bott Periodicity). We have the following periodicity relations

$$\pi_k(\operatorname{GL}(\mathbb{N},\mathbb{C})) \cong \pi_{k+2}(\operatorname{GL}(\mathbb{N},\mathbb{C}))$$
$$\pi_k(\operatorname{GL}(\mathbb{N},\mathbb{R})) \cong \pi_{k+8}(\operatorname{GL}(\mathbb{N},\mathbb{R}))$$

so that we can determine the homotopy groups of $\mathrm{GL}(\mathbb{N},\mathbb{K})$ from the following table:

	$\operatorname{GL}(\mathbb{N},\mathbb{R})$	$ $ GL (\mathbb{N}, \mathbb{C})
π_0	$\mathbb{Z}/2\mathbb{Z}$	0
π_1	$\mathbb{Z}/2\mathbb{Z}$	\mathbb{Z}
π_2	0	0
π_3	\mathbb{Z}	\mathbb{Z}
π_4	0	0
π_5	0	\mathbb{Z}
π_6	0	0
π_7	\mathbb{Z}	Z

5. Homotopy groups of the congruence subgroups of the Schatten ideals

In this section, H is again a K-Hilbert space. The $Schatten \ ideals$ are the Banach spaces defined by

$$B_p(H) := \{x \in B(H) : ||x||_p < \infty\}$$
$$||x||_p := \left(\operatorname{tr}((x^*x)^{p/2})\right)^{1/p}$$

for $p \in [1, \infty)$. We also define

$$B_{\infty}(H) := K(H)$$
$$|| \cdot ||_{\infty} := || \cdot ||$$

They have the following properties.

Proposition 16 (cf. my Zwischentreffen talk).

(i) The $B_p(H)$ are ideals in B(H).

(ii) We have

$$B_{fin}(H) \subseteq B_1(H) \subseteq B_p(H) \subseteq B_q(H) \subseteq B_{\infty}(H) \subseteq B(H)$$

for $1 \leq p \leq q \leq \infty$.

(iii) For any
$$x = \sum a_j \langle \cdot, e_j \rangle f_j \in B_{\infty}(H)$$
 with ONB (e_j) , (f_j) we have
 $||x||_p = ||(a_j)||_{l^p}$

(iv) If (e_j) is any ONB of H, the set of projections $\{\langle \cdot, e_i \rangle e_j\}$ is total in each of the spaces $B_p(H), p \in [1, \infty]$.

The *congruence subgroups* of the Schatten ideals and the corresponding unitaries are the Banach-Lie groups given by

$$GL_p(H) := GL(H) \cap (1 + B_p(H))$$
$$U_p(H) := GL_p(H) \cap U(H)$$

Their Lie algebras are given by

$$\mathfrak{gl}_p(H) := \mathcal{B}_p(H)$$

 $\mathfrak{u}_p(H) := \mathcal{B}_p(H) \cap \mathfrak{u}(H)$

respectively. Oonce again we have a polar decomposition

$$\operatorname{GL}_p(H) \cong \operatorname{U}_p(H) \times \operatorname{Herm}_p(H)$$

with $\operatorname{Herm}_p(H) := \operatorname{Herm}(H) \cap \operatorname{B}_p(H)$ (cf. [Nee00, Def. IV.20, Prop. A.4]).

Theorem 17. Let H be an infinite-dimensional \mathbb{K} -Hilbert space and $p \in [1, \infty]$. Then the following assertions hold:

- (i) $\pi_k(\operatorname{GL}_p(H)) \cong \pi_k(\operatorname{GL}(\mathbb{N}, \mathbb{K}))$
- (ii) The inclusion map $\operatorname{GL}_p(H_s) \hookrightarrow \operatorname{GL}_p(H)$ is a weak homotopy equivalence for every infinite-dimensional separable subspace $H_s \subseteq H$.
- (iii) The inclusion map $\operatorname{GL}_p(H) \hookrightarrow \operatorname{GL}_q(H)$ is a homotopy equivalence for $p \leq q$.

Proof. (i) Fix an ONB (e_j) . By the previous proposition, $B_0(H) := \operatorname{span}\{\langle \cdot, e_i \rangle e_j\} \subseteq B_p(H)$ is dense. We endow $B_0(H)$ with the direct limit topology with respect to the directed set of its finite-dimensional subspaces.

Then there is a natural isomorphism $B_0(H) \cong M(J, \mathbb{K})$ by means of the basis (e_j) which restricts to the natural identification of $(\operatorname{GL}_p(H) - 1) \cap B_0(H)$ with $\operatorname{GL}(J, \mathbb{K}) - 1$ if the former endowed with the subspace topology of $B_0(H)$.

On the other hand Theorem 9 (i) yields that $(\operatorname{GL}_p(H) - 1) \cap B_0(H)$ and $\operatorname{GL}_p(H) - 1$ are weakly homotopy equivalent – again if the former is endowed with the subspace topology of $B_0(H)$.

Consequently we get a weak homotopy equivalence between $\operatorname{GL}_p(H)$ and $\operatorname{GL}(J, \mathbb{K})$, the latter group in turn being homotopy equivalent to $\operatorname{GL}(\mathbb{N}, \mathbb{K})$ by Corollary 13.

(ii) The claim follows from the commutative diagram.

$$\begin{array}{c} \operatorname{GL}(\mathbb{N},\mathbb{K}) \xrightarrow[(i)]{W-\simeq} & \operatorname{GL}_p(H_s) \\ w-\simeq \int 12 & & & \\ \operatorname{GL}(J,\mathbb{K}) \xrightarrow[(i)]{W-\simeq} & \operatorname{GL}_p(H) \end{array}$$

(iii) $B_p(H) \subseteq B_q(H)$ is a dense subset; that is, the inclusion $B_p(H) \hookrightarrow B_q(H)$ has dense range. Theorem 9 (ii) now shows that the inclusion $\operatorname{GL}_p(H)-1 \hookrightarrow \operatorname{GL}_q(H)-1$ is a homotopy equivalence.

Finally, we want to compute the homotopy groups of the groups

$$GL_p(H, I) := GL_p(H) \cap GL(H, I)$$
$$U_p(H, I) := U_p(H) \cap GL(H, I)$$

Observe that we have a *polar decomposition*

$$\operatorname{GL}_p(H,I) \cong \operatorname{U}_p(H,I) \times \operatorname{Herm}_p(H,I)$$

MICHAEL WALTER

with $\operatorname{Herm}_p(H, I) := \operatorname{Herm}_p(H) \cap \operatorname{Herm}(H, I)$ (inherited from the groups we have intersected).

Corollary 18. Let H be a infinite-dimensional complex Hilbert space with conjugation I, and $p \in [1, \infty]$. Then the following assertions hold:

- (i) $\pi_k(\operatorname{GL}_p(H, I)) \cong \pi_k(\operatorname{GL}(\mathbb{N}, \mathbb{R}))$
- (ii) The inclusion map $\operatorname{GL}_p(H_s, I|_{H_s}) \hookrightarrow \operatorname{GL}_p(H, I)$ is a weak homotopy equivalence for every infinite-dimensional separable I-invariant subspace $H_s \subseteq H$.
- (iii) The inclusion map $\operatorname{GL}_p(H, I) \hookrightarrow \operatorname{GL}_q(H, I)$ is a homotopy equivalence for $p \leq q$.

Proof. Using polar decomposition we get

$$\operatorname{GL}_p(H,I) \simeq \operatorname{U}_p(H,I) = \operatorname{U}_p(H) \cap \operatorname{U}(H,I)$$

$$\stackrel{\prime}{\cong} \mathrm{U}_p(H_{\mathbb{R}}) \cap \mathrm{U}(H_{\mathbb{R}}^I) = \mathrm{U}_p(H_{\mathbb{R}}^I) \simeq \mathrm{GL}_p(H_{\mathbb{R}}^I)$$

Thus all three claims follow from the corresponding assertions of Theorem 17. \Box

References

- [Bot59] Raoul Bott. The stable homotopy of the classical groups. Annals of Mathematics, 70:313– 337, 1959.
- [Kui65] Nicolaas H Kuiper. The homotopy type of the unitary group of hilbert space. Topology, 3:19–30, 1965.
- [Nee00] Karl-Hermann Neeb. Infinite-dimensional Lie groups and their representations, Lectures at the European School in Group Theory, 2000.
- [Nee02] Karl-Hermann Neeb. Classical Hilbert-Lie Groups, their Extensions and their Homotopy Groups. In Geometry and Analysis on Lie Groups, volume 55 of Banach Center Publications. Polish Academy of Sciences, 2002.
- [Nee06] Karl-Hermann Neeb. Infinite-dimensional Lie groups, lectures at the Monastir Summer School, 2006.
- [Pal66] Richard S Palais. Homotopy theory of infinite-dimensional manifolds. Topology, 5:1–16, 1966.