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Let D(Ω) := C∞c (Ω) denote the space of test functions on Ω, and let D′(Ω) be its dual, the space of
distributions. All function spaces are real.

1 Introduction
For sufficiently “nice” 1domains Ω ⊆ Rn, one has the Helmholtz decomposition

Lp(Ω)n = Lpσ(Ω)⊕Gp(Ω)

of Lp into a sum of the solenoidal subspace Lpσ and the space of gradients Gp; that is:

Dσ(Ω) = {u ∈ D(Ω)n | div(u) = 0}

Lpσ(Ω) = Dσ(Ω)
||·||Lp

Gp(Ω) = {∇p | p ∈ Lploc(Ω) and ∇p ∈ Lp(Ω)n}

The projection P : Lp(Ω)n → Lpσ(Ω) is called Helmholtz projection.
It is commonly applied2to the Navier-Stokes equation

∂tu−∆u+∇π + (u · ∇)u = 0

in order to eliminate the pressure term (which is a gradient). In doing so, one introduces new terms such as
−P∆u, which can as well be understood to be the application of an operator −P∆, the so-called Stokes operator.

In this article we will first describe Monniaux’s ([2]) approach of generalizing both Helmholtz projection
and Stokes operator to arbitrary domains in the special case n = 3 and p = 2.

In the final section, we will briefly consider the general case and show a characterization of the Helmholtz
projection by Haak and Kunstmann [1] (based on the approach of Simader and Sohr in [4]).

Before getting started, we cite the following

1 Fact. (i) (de Rahm) Let u ∈ D′(Ω)n. Then there is an p ∈ D′(Ω) with u = ∇p if and only if u vanishes
on Dσ(Ω).

(ii) Let p ∈ D′(Ω). If ∇p ∈ Lq(Ω)n, then p ∈ Lqloc(Ω).

2 Helmholtz projection
Let Ω ⊆ R3 be an arbitrary domain. The space

L2(Ω)3 with 〈u, v〉 =

∫
Ω

u · v dµ

is a Hilbert space, and if we define

G2(Ω) := {∇p | p ∈ L2
loc(Ω) and ∇p ∈ L2(Ω)3}

L2
σ(Ω) := G2(Ω)⊥

we have the Helmholtz decomposition

L2(Ω)3 = L2
σ(Ω)

⊥
⊕ G2(Ω)

since G2(Ω) is a closed subspace of L2(Ω)3 (which follows from fact 1 (i)).
The following proposition shows that this is a Helmholtz decomposition in the sense of the introduction.

1e.g. for bounded, simply connected domains with Lipschitz or C2-boundary.
2Of course this is only possible if u satisfies certain properties, e.g. −∆u ∈ Lp(Ω).
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2 Proposition.

L2
σ(Ω) = Dσ(Ω)

||·||L2

Proof. (1) Let φ ∈ Dσ(Ω). For all ∇p ∈ G2(Ω) we have

〈φ,∇p〉 = −〈div(φ), p〉 = 0

(by partial integration), hence φ ∈ L2
σ(Ω).

(2) In order to prove density it is sufficient to show that the following statement holds for all u ∈ L2(Ω)3:

u ⊥ Dσ(Ω) ⇒ u ∈ G2(Ω)

But this is clear from fact 1.

The orthogonal projection P : L2(Ω)3 → L2
σ(Ω) is again called Helmholtz projection. It can also be charac-

terized as follows:

3 Proposition. The Helmholtz projection P is the adjoint of the canonical injection J : L2
σ(Ω)→ L2(Ω)3, that

is, P = J∗.

Proof. Let u ∈ L2
σ(Ω) and v ∈ L2(Ω)3 with Helmholtz decomposition v = vσ + v∇. Evidently,

〈u,Pv〉 = 〈u, vσ〉 = 〈u, v〉 = 〈Ju, v〉

3 Dirichlet-Laplace operator
There are various definitions of the Laplace operator ∆ (e.g. the classical definition, weak definitions, the
distributional definition etc.). It will turn out that for our purposes it is useful to employ the Dirichlet-Laplace
operator whose construction we will give in what follows.

We consider the Hilbert space

H1
0 (Ω)3 = D(Ω)3

〈·,·〉H1 ⊆ H1(Ω)3

with 〈u, v〉H1 = 〈u, v〉+

3∑
i=1

〈∂iu, ∂iv〉

whose dual is commonly designated by

H−1(Ω)3 := (H1
0 (Ω)3)′

Now the bilinear form

a :

{
H1

0 (Ω)3 ×H1
0 (Ω)3 → R

(u, v) 7→
∑3
i=1 〈∂iu, ∂iv〉

induces the Dirichlet-Laplace3operator given by

∆Ω
D :

{
H1

0 (Ω)3 → H−1(Ω)3

v 7→ −a(·, v)

4 Proposition. ∆Ω
D is well-defined and bounded.

Proof.

| − a(u, v)| ≤
3∑
i=1

| 〈∂iu, ∂iv〉 | ≤
3∑
i=1

||∂iu||||∂iv||

≤

(
3∑
i=1

||∂iu||2
) 1

2
(

3∑
i=1

||∂iv||2
) 1

2

≤ ||u||H1 ||v||H1

⇒ || − a(·, v)|| ≤ ||v||H1 and ||∆Ω
D|| ≤ 1

3This name reflects the fact that ∆Ω
D is defined on the function space H1

0 (Ω) consisting of functions u satisfying the Dirichlet
boundary condition u|δΩ = 0.
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We remark that the operator

δ −∆Ω
D :

{
H1

0 (Ω)3 → H−1(Ω)3

v 7→ δ 〈·, v〉+ a(·, v)

is an isomorphism for all δ > 0. If the domain Ω is bounded, Poincaré’s inequality shows that even ∆Ω
D is an

isomorphism.

4 Stokes operator
Now that we have a useful definition of the Laplace operator we need to “extend” the Helmholtz projection such
that its domain contains H−1(Ω).

The space

V := H1
0 (Ω)3 ∩ L2

σ(Ω)

is a closed subspace of H1
0 (Ω)3, and hence a Hilbert space in its own right (endowed with 〈·, ·〉H1).

5 Proposition.

L2
σ(Ω) = V ||·||L2

Proof. Since Dσ(Ω) ⊆ V this follows from proposition 2.

This already indicates that V is still large enough a space to be useful It will also prove useful later on.
Let J̃ : V → H1

0 (Ω)3 be the canonical injection and let P̃ : H−1(Ω) → V ′ be its adjoint. Clearly both are
continuous mappings.

6 Proposition. P̃ and P are consistent in the following sense

P̃(〈·, v〉) = 〈·,Pv〉 ∀v ∈ L2(Ω)3

Proof. For all u ∈ V we have

P̃(〈·, v〉)(u) =
〈
J̃u, v

〉
= 〈Ju, v〉 = 〈u,Pv〉

7 Proposition. The operator

A0 :

{
V → V ′

v 7→ −P̃∆Ω
DJ̃v

is bounded and self-adjoint in (V, 〈·, ·〉H1), and A0v = a(·, v) where a is the bilinear form from section 3.

Proof. (1) A0 is composed of bounded operators, hence bounded.
(2) For all u, v ∈ V we have

(A0v)(u) = (−P̃∆Ω
DJ̃v)(u) = −(∆Ω

DJ̃v)(J̃u)

= a(J̃u, J̃v) = a(u, v)

(3) A0 is defined on the entire Hilbert space V (i.e. bounded), hence self-adjointness will follow from
symmetry. But it is clear from (2) that A0 is symmetric.

8 Definition. The Stokes operator is defined by

D(A) :={v ∈ V | A0v ∈ L2
σ(Ω)}

:={v ∈ V | ∃u ∈ L2
σ(Ω) : A0v = 〈·, u〉}

A : D(A)→ L2
σ(Ω), v 7→ u
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9 Theorem. The Stokes operator is self-adjoint in (L2
σ(Ω), 〈·, ·〉), generates an analytic semigroup

(
e−tA

)
t≥0

,
and satisfies

D(A) ={v ∈ V | ∃π ∈ D′(Ω) : ∇π ∈ H−1(Ω)3

and −∆Ω
Dv +∇π ∈ L2

σ(Ω)}
:={v ∈ V | ∃π ∈ D′(Ω) : ∇π ∈ H−1(Ω)3

and ∃u ∈ L2
σ(Ω) : −∆Ω

Dv +∇π = 〈·, u〉}
Av =u

Proof. (1) By proposition 5 it follows that b := a|V×V is a densely-defined bilinear form on L2
σ(Ω). It is also:

(i) accretive, as b ≥ 0,

(ii) closed, since D(b) = V, || · ||b = || · ||H1 and we have seen before that (V, 〈·, ·〉H1) is complete,

(iii) continous in the sense that |b(u, v)| ≤ C||u||b||v||b; this is shown by proposition 4.

Under these conditions, the operator associated with the adjoint form b∗ is simply the adjoint of the operator
associated with b (see e.g. Ouhabaz [3]).

A is by its very definition the operator associated with b. And b is symmetric, hence b∗ = b and it follows
that A∗ = A, D(A∗) = D(A), that is, A is self-adjoint.

(2) Another result from the theory of sesquilinear forms is that if A is the operator associated with a densely-
defined bilinear form b satisfying (i)-(iii), −A generates a (strongly continuous contraction) semigroup on L2

σ(Ω)
which is holomorphic in an open sector

{z ∈ C | 0 6= z and | arg(z)| < θ}

In particular it is analytic on R>0.
(3) Let Av = u. Then

− P̃∆Ω
Dv = 〈·, u〉 6

= P̃(〈·, u〉)
⇒ P̃

(
−∆Ω

Dv − 〈·, u〉
)

= 0

⇒ −∆Ω
Dv − 〈·, u〉 ∈ ker(P̃)

It remains to show that the kernel consists of gradients:

ker(P̃) ={φ ∈ H−1(Ω)3 | P̃φ = 0}
={φ ∈ H−1(Ω)3 | φ|V = 0}
2
={φ ∈ H−1(Ω)3 | φ|Dσ(Ω) = 0}
1
={φ ∈ H−1(Ω)3 | ∃π ∈ D′(Ω) : φ = ∇π}

5 General case
Let p ∈ (1,∞), 1 = 1

p + 1
p′ , n ≥ 2 and Ω ⊆ Rn be an arbitrary domain. Let 〈u, v〉 :=

∫
Ω
u · v dµ. Define

Ẇ 1,p(Ω) := {[u] = u+ C | u ∈ Lploc(Ω)

and ∇u ∈ Lp(Ω)n}
||[u]||Ẇ 1,p := ||∇u||Lp

This is a Banach space, as is its dual Ẇ 1,p(Ω)′. The gradient operator

∇p : Ẇ 1,p(Ω)→ Lp(Ω)n, u 7→ ∇u

is an isometry pretty much by definition of the norms. We isometrically identify Lp
′
(Ω) and (Lp(Ω))′, and it

follows that the adjoint

∇′p : Lp
′
(Ω)n → (Ẇ 1,p(Ω))′
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is surjective with norm ≤ 1. Define

Gp(Ω) := ran(∇p) ⊆ Lp(Ω)n

Lpσ(Ω) := ker(∇′p′) ⊆ Lp(Ω)n

Clearly this definition of Gp agrees with the one in the introduction. The following proposition shows that this
also applies to Lpσ.

10 Proposition.

Lpσ(Ω) = Dσ(Ω)
||·||Lp

Proof. (1) Let φ ∈ Dσ(Ω). Then for all u ∈ Ẇ 1,p′(Ω), we have

(∇′p′φ)(u) = 〈∇p′u, φ〉 = −〈u,div(φ)〉 = 0

⇒φ ∈ ker(∇′p′) = Lpσ

(2) In order to prove density it is sufficient to show that the values of a functional on Lpσ(Ω) is already
determined by its values on Dσ(Ω). Equivalently, we show that the following assertion holds for all v ∈
Lp

′
(Ω)n ∼= (Lp(Ω)n)′:

〈·, v〉 |Dσ(Ω) = 0 ⇒ 〈·, v〉 |Lpσ(Ω) = 0

By the assumption and fact 1, we have v = ∇p′p for a p ∈ Lp′(Ω), hence

∀u ∈ Lpσ(Ω) : 〈u, v〉 = 〈u,∇p′p〉 =
〈
∇′p′u, p

〉
= 0

11 Theorem. We have the decomposition

Lp(Ω)n = Lpσ(Ω)⊕Gp(Ω)

if and only if the operator

Np : Ẇ 1,p(Ω)→ (Ẇ 1,p′(Ω))′, Np := ∇′p′∇p

is bijective.

(Ẇ 1,p′(Ω))′

Lp(Ω)n

∇′
p′ 55

ii ∇p

Ẇ 1,p(Ω)

Np

OO

In that case,

Pp : Lp(Ω)n → Lpσ(Ω), Pp := id−∇pN−1
p ∇′p′

is a projection with kernel Gp(Ω). It is called the Helmholtz projection in Lp(Ω).

Proof. (⇒) Since the sum is direct, we have

ker(∇′p′) ∩ ran(∇p) = {0}

and Np is injective. Also,

ker(∇′p′) + ran(∇p) = Lp(Ω)n

⇒ ran(Np) = ∇′p′(ran(∇p)) = ∇′p′(Lp(Ω)n) = ran(∇′p′)

and Np is surjective since ∇′p′ is so.
(⇐) If Np is bijective, its inverse is bounded by the open mapping theorem, hence Pp is bounded. Clearly,

Pp|Lpσ(Ω) = id
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and

Ppv = 0 ⇒ v ∈ ran(∇p) = Gp(Ω)

v = ∇pu ∈ Gp(Ω) ⇒ Ppv = v −∇pN−p 1Npu︸ ︷︷ ︸
=∇pu=v

= 0

⇒ ker(Pp) = Gp(Ω)

Hence, the sum Lpσ(Ω) +Gp(Ω) is direct, and and since every v ∈ Lp(Ω)n can be written as

v = Ppv︸︷︷︸
∈Lpσ(Ω)

+ (v − Ppv)︸ ︷︷ ︸
∈ker(Pp)=Gp(Ω)

it is entire space.

Note that for φ ∈ D(Ω), v ∈ Ẇ 1,p′(Ω) we have

(Npφ)(v) = 〈∇pφ,∇p′v〉 = 〈−∆φ, v〉

hence −Np can be interpreted as a weak formulation of the Laplace operator.
From chapter 2, we see that for n = 3, N2 is always bijective and P2 is just the orthogonal projection P onto

L2
σ(Ω).
Finally we remark that Pp can be extended in a similar way as P was extended to P̃ in chapter 4, see Haak

and Kunstmann [1] for details.
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