Helmholtz projection and Stokes operator on arbitrary domains

Michael Walter

Let D(Q) := C°(Q) denote the space of test functions on 2, and let D'(Q2) be its dual, the space of
distributions. All function spaces are real.

1 Introduction
For sufficiently “nice” 'domains € C R™, one has the Helmholtz decomposition
LP(Q)" = L3 (Q) & GP(Q)
of L? into a sum of the solenoidal subspace L? and the space of gradients G?; that is:
D, (Q) ={ueDQ)" | div(u) = 0}
I2(Q) = TH llp
GP() ={Vp|pe L] () and Vp € LP(Q)"}

The projection P : LP(Q)™ — LP(Q) is called Helmholtz projection.
It is commonly applied®to the Navier-Stokes equation

ou—Au+Vr+ (u-Viu =

in order to eliminate the pressure term (which is a gradient). In doing so, one introduces new terms such as
—PAwu, which can as well be understood to be the application of an operator —IPA, the so-called Stokes operator.

In this article we will first describe MONNIAUX’s ([2]) approach of generalizing both Helmholtz projection
and Stokes operator to arbitrary domains in the special case n = 3 and p = 2.

In the final section, we will briefly consider the general case and show a characterization of the Helmholtz
projection by HAAK and KUNSTMANN [1] (based on the approach of SIMADER and SOHR in [4]).

Before getting started, we cite the following

1 Fact. (i) (de Rahm) Let u € D'(Q)™. Then there is an p € D'(Q) with w = Vp if and only if u vanishes
on Dy ().

(ii) Let p € D'(Q). If Vp € LYQ)", then p € L} ().

2 Helmholtz projection

Let Q C R? be an arbitrary domain. The space

L*(Q)® with (u,v) = / u-v dp
Q
is a Hilbert space, and if we define

G*(Q) :={Vp|pe L,.(Q) and Vp € L*(Q)*}
L2(Q) = G*()*

we have the Helmholtz decomposition
1
LX(Q)° = L3(Q) © G*(Q)

since G?(1) is a closed subspace of L?(2)? (which follows from fact 1 (i)).
The following proposition shows that this is a Helmholtz decomposition in the sense of the introduction.

le.g. for bounded, simply connected domains with Lipschitz or C2-boundary.
20f course this is only possible if u satisfies certain properties, e.g. —Au € LP().



2 Proposition.
L2(@) =D,
Proof. (1) Let ¢ € Dy(Q). For all Vp € G*(Q2) we have

(¢, Vp) = —(div(¢),p) =0

(by partial integration), hence ¢ € L2().
(2) In order to prove density it is sufficient to show that the following statement holds for all u € L?(£2)3:

ul Dy(Q) = ueG3Q)
But this is clear from fact 1. O

The orthogonal projection P : L#(Q2)3 — L2(Q) is again called Helmholtz projection. It can also be charac-
terized as follows:

3 Proposition. The Helmholtz projection P is the adjoint of the canonical injection J : L2(Q) — L2(2)3, that
is, P = J*.

Proof. Let u € L2(2) and v € L?(Q)? with Helmholtz decomposition v = v, + vy. Evidently,
(u, Pv) = (u,vy) = (u,v) = (Ju,v)

3 Dirichlet-Laplace operator

There are various definitions of the Laplace operator A (e.g. the classical definition, weak definitions, the
distributional definition etc.). It will turn out that for our purposes it is useful to employ the Dirichlet-Laplace
operator whose construction we will give in what follows.

We consider the Hilbert space

HY (@) =D " < H'()°
3

with  (u,v) ;1 = (u,v) + Z (Oiu, O;v)
i=1

whose dual is commonly designated by
H™H(Q) = (Hy()%)
Now the bilinear form
' { HHQ)® x HY(Q)® = R
| (ww) e 0 (Ghu, 950)

induces the Dirichlet-Laplace®operator given by

o[ P @
b v —a(-,v)

4 Proposition. A% is well-defined and bounded.
Proof.

3

3
| = a(u,v)] <Y [ (G, 00| < [10sulll[0v|
i=1

i=1

3 5 /3 5
< (Z ||3iu|2> (Z ||3iv||2>
i1 i1

< lull g [[ol]
= |l =a(, o)l < ol and  |JAB|I <1
O

3This name reflects the fact that A% is defined on the function space Hé(ﬂ) consisting of functions w satisfying the Dirichlet
boundary condition u|sn = 0.




We remark that the operator

o) Hi(Q)?—H Q)
= Ab: { v 8 (- 0) +al,v)

is an isomorphism for all § > 0. If the domain Q is bounded, Poincaré’s inequality shows that even A% is an
isomorphism.

4 Stokes operator

Now that we have a useful definition of the Laplace operator we need to “extend” the Helmholtz projection such
that its domain contains H~1(Q).
The space

Vi=Hj(Q)’ N L2(Q)
is a closed subspace of H}(£2)3, and hence a Hilbert space in its own right (endowed with (-, ) ;1 ).

5 Proposition.
Proof. Since D, (£2) C V this follows from proposition 2. O

This already indicates that V' is still large enough a space to be useful It will also prove useful later on.
Let J : V — H}(2)? be the canonical injection and let P : H=1(Q) — V' be its adjoint. Clearly both are
continuous mappings.

6 Proposition. P and P are consistent in the following sense

P({-,v)) = (-,Pv) Vo e L*(Q)?

Proof. For all u € V we have

7 Proposition. The operator
V=V
AO : ~ a7
v = —PARJv
is bounded and self-adjoint in (V, (-,-) 1), and Agv = a(-,v) where a is the bilinear form from section 3.

Proof. (1) Ag is composed of bounded operators, hence bounded.
(2) For all u,v € V we have

(Apv)(u) = (—PABJv)(u) = —(ABJv)(Ju)
= a(Ju, Jv) = a(u,v)

(3) Ap is defined on the entire Hilbert space V (i.e. bounded), hence self-adjointness will follow from
symmetry. But it is clear from (2) that Ay is symmetric. O

8 Definition. The Stokes operator is defined by
D(A) :={veV|Awe L2(Q)}
={v eV |IueL2(Q): Agw = (-, u)}
A:D(A) = L2(Q), v—u



9 Theorem. The Stokes operator is self-adjoint in (L%(Q),(-,-)), generates an analytic semigroup (e’tA)

and satisfies

t>0°

D(A)={veV|3IreD(Q):Vrec HQ)>
and — Ao+ Vr € L2(Q)}
={veV|IneD(Q): Vre H1(Q)?
and Ju € L2(Q) : —A%v + Vr = (-, u)}
Av =u
Proof. (1) By proposition 5 it follows that b := a|y,xy is a densely-defined bilinear form on L2((2). It is also:
(i) accretive, as b >0,
(ii) closed, since D(b) =V, ||-||o = || - ||g: and we have seen before that (V, (:,-) 41) is complete,
(iii) continous in the sense that |b(u,v)| < C||u||e||v]|s; this is shown by proposition 4.

Under these conditions, the operator associated with the adjoint form b* is simply the adjoint of the operator
associated with b (see e.g. OUHABAZ [3]).

A is by its very definition the operator associated with b. And b is symmetric, hence b* = b and it follows
that A* = A, D(A*) = D(A), that is, A is self-adjoint.

(2) Another result from the theory of sesquilinear forms is that if A is the operator associated with a densely-
defined bilinear form b satisfying (i)-(iii), —A generates a (strongly continuous contraction) semigroup on L2 (£2)
which is holomorphic in an open sector

{z € C|0+#zand |arg(z)| < 6}

In particular it is analytic on Ryg.
(3) Let Av = u. Then

= P (—A%v —(-,u
= —A%v— (-, u) € ker
It remains to show that the kernel consists of gradients:
ker(P) ={¢ € H*(Q)* | P¢ = 0}
={p € HTH(Q)? | ¢lv = 0}
={o € HHQ® | lp, (o) =0}
L{p e HYQ? | IneD(Q): ¢ = Vr}

5 General case

Let pe (1,00), 1 = % + 1%, n > 2 and Q C R™ be an arbitrary domain. Let (u,v) := [, u-v du. Define

WP(Q) = {[u] =u+C |u e L’ (Q)

loc

and Vu € LP(Q)"}

ey = IV ullLe
This is a Banach space, as is its dual W'?(Q)". The gradient operator
V,: WHP(Q) — LP(Q)", u— Vu

is an isometry pretty much by definition of the norms. We isometrically identify L? () and (LP(€2)), and it
follows that the adjoint

V), L L ()" — (WP (Q))



is surjective with norm < 1. Define

GP(Q) :=ran(V,) C LP(Q)"

LE(Q) == ker(V,,) € LP(Q)"

Clearly this definition of GP agrees with the one in the introduction. The following proposition shows that this
also applies to LZ.

10 Proposition.
I2(Q) = 7DU(Q)||'HLP
Proof. (1) Let ¢ € D, (). Then for all u € W (), we have

(V@) (u) = (Vyu, ¢) = — (u,div(¢)) =0
=¢ € ker(V,,) = L

(2) In order to prove density it is sufficient to show that the values of a functional on LE(Q) is already

determined by its values on D,(2). Equivalently, we show that the following assertion holds for all v €
L (@) = (LP()")":

(V) D) =0 = () |z =0
By the assumption and fact 1, we have v = V,yp forap € LPI(Q), hence

Vu € Lg(Q) : <7.L, ’U> = <U, Vp’p> = <v;ﬂuap> =0

11 Theorem. We have the decomposition
LP(Q)" = Ly () ® G*(Q)

if and only if the operator

18 bijective.

In that case,
Py : LP(Q)™ — LE(Q), P, :=id—V,N, 'V,
is a projection with kernel GP(). It is called the Helmholtz projection in LP(Q).
Proof. (=) Since the sum is direct, we have
ker(V,,) Nran(V,) = {0}
and N, is injective. Also,

ker(Vy,) +ran(V,) = LP(Q)"

=ran(N,) = V,, (ran(V,)) = V,(LP(Q)") = ran(V,,)

and N, is surjective since V;, is so.
(<) If N, is bijective, its inverse is bounded by the open mapping theorem, hence P, is bounded. Clearly,

Pplre o) = id



and
P,v=0 = veran(V,) =GP(Q)
v=VyueG'(Q) = Po=v—-V,N, 1IN,u=0
—_——

=Vyu=v

= ker(P,) = GP(2)
Hence, the sum L2(Q) + GP(Q) is direct, and and since every v € LP(2)" can be written as

v= P + (v—Pyv)
~~ ——
ELL(Q)  €ker(Pp)=GP(Q)
it is entire space.
Note that for ¢ € D(Q), v € W' (Q) we have
(Npg)(v) = (Vp, Vo) = (=20, )

hence — NV, can be interpreted as a weak formulation of the Laplace operator.

From chapter 2, we see that for n = 3, Ny is always bijective and s is just the orthogonal projection P onto

L2(9).

Finally we remark that P, can be extended in a similar way as P was extended to P in chapter 4, see HAAK

and KUNSTMANN [1] for details.
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