Helmholtz projection and Stokes operator on arbitrary domains

Michael Walter

Let $\mathcal{D}(\Omega) := C_c^{\infty}(\Omega)$ denote the space of test functions on Ω , and let $\mathcal{D}'(\Omega)$ be its dual, the space of distributions. All function spaces are real.

1 Introduction

For sufficiently "nice" ¹domains $\Omega \subseteq \mathbb{R}^n$, one has the *Helmholtz decomposition*

$$L^p(\Omega)^n = L^p_{\sigma}(\Omega) \oplus G^p(\Omega)$$

of L^p into a sum of the *solenoidal* subspace L^p_{σ} and the space of gradients G^p ; that is:

$$\mathcal{D}_{\sigma}(\Omega) = \{ u \in \mathcal{D}(\Omega)^{n} \mid \operatorname{div}(u) = 0 \}$$
$$L^{p}_{\sigma}(\Omega) = \overline{\mathcal{D}_{\sigma}(\Omega)}^{||\cdot||_{L^{p}}}$$
$$G^{p}(\Omega) = \{ \nabla p \mid p \in L^{p}_{loc}(\Omega) \text{ and } \nabla p \in L^{p}(\Omega)^{n} \}$$

The projection $\mathbb{P}: L^p(\Omega)^n \to L^p_{\sigma}(\Omega)$ is called *Helmholtz projection*.

It is commonly applied² to the Navier-Stokes equation

$$\partial_t u - \Delta u + \nabla \pi + (u \cdot \nabla)u = 0$$

in order to eliminate the pressure term (which is a gradient). In doing so, one introduces new terms such as $-\mathbb{P}\Delta u$, which can as well be understood to be the application of an operator $-\mathbb{P}\Delta$, the so-called *Stokes operator*.

In this article we will first describe MONNIAUX's ([2]) approach of generalizing both Helmholtz projection and Stokes operator to arbitrary domains in the special case n = 3 and p = 2.

In the final section, we will briefly consider the general case and show a characterization of the Helmholtz projection by HAAK and KUNSTMANN [1] (based on the approach of SIMADER and SOHR in [4]).

Before getting started, we cite the following

- **1 Fact.** (i) (de Rahm) Let $u \in \mathcal{D}'(\Omega)^n$. Then there is an $p \in \mathcal{D}'(\Omega)$ with $u = \nabla p$ if and only if u vanishes on $\mathcal{D}_{\sigma}(\Omega)$.
- (ii) Let $p \in \mathcal{D}'(\Omega)$. If $\nabla p \in L^q(\Omega)^n$, then $p \in L^q_{loc}(\Omega)$.

2 Helmholtz projection

Let $\Omega \subseteq \mathbb{R}^3$ be an *arbitrary* domain. The space

$$L^{2}(\Omega)^{3}$$
 with $\langle u, v \rangle = \int_{\Omega} u \cdot v \ d\mu$

is a Hilbert space, and if we define

$$G^{2}(\Omega) := \{ \nabla p \mid p \in L^{2}_{loc}(\Omega) \text{ and } \nabla p \in L^{2}(\Omega)^{3} \}$$
$$L^{2}_{\sigma}(\Omega) := G^{2}(\Omega)^{\perp}$$

we have the Helmholtz decomposition

$$L^{2}(\Omega)^{3} = L^{2}_{\sigma}(\Omega) \stackrel{\perp}{\oplus} G^{2}(\Omega)$$

since $G^2(\Omega)$ is a closed subspace of $L^2(\Omega)^3$ (which follows from fact 1 (i)).

The following proposition shows that this is a Helmholtz decomposition in the sense of the introduction.

¹e.g. for bounded, simply connected domains with Lipschitz or C^2 -boundary.

²Of course this is only possible if u satisfies certain properties, e.g. $-\Delta u \in L^p(\Omega)$.

2 Proposition.

$$L^2_{\sigma}(\Omega) = \overline{\mathcal{D}_{\sigma}(\Omega)}^{||\cdot||_{L^2}}$$

Proof. (1) Let $\phi \in \mathcal{D}_{\sigma}(\Omega)$. For all $\nabla p \in G^2(\Omega)$ we have

$$\langle \phi, \nabla p \rangle = - \langle \operatorname{div}(\phi), p \rangle = 0$$

(by partial integration), hence $\phi \in L^2_{\sigma}(\Omega)$.

(2) In order to prove density it is sufficient to show that the following statement holds for all $u \in L^2(\Omega)^3$:

$$u \perp \mathcal{D}_{\sigma}(\Omega) \quad \Rightarrow \quad u \in G^2(\Omega)$$

But this is clear from fact 1.

The orthogonal projection $\mathbb{P}: L^2(\Omega)^3 \to L^2_{\sigma}(\Omega)$ is again called *Helmholtz projection*. It can also be characterized as follows:

3 Proposition. The Helmholtz projection \mathbb{P} is the adjoint of the canonical injection $J : L^2_{\sigma}(\Omega) \to L^2(\Omega)^3$, that is, $\mathbb{P} = J^*$.

Proof. Let $u \in L^2_{\sigma}(\Omega)$ and $v \in L^2(\Omega)^3$ with Helmholtz decomposition $v = v_{\sigma} + v_{\nabla}$. Evidently,

$$\langle u, \mathbb{P}v \rangle = \langle u, v_{\sigma} \rangle = \langle u, v \rangle = \langle Ju, v \rangle$$

3 Dirichlet-Laplace operator

There are various definitions of the Laplace operator Δ (e.g. the classical definition, weak definitions, the distributional definition etc.). It will turn out that for our purposes it is useful to employ the *Dirichlet-Laplace* operator whose construction we will give in what follows.

We consider the Hilbert space

$$\begin{aligned} H_0^1(\Omega)^3 &= \overline{\mathcal{D}(\Omega)^3}^{\langle \cdot, \cdot \rangle_{H^1}} \subseteq H^1(\Omega)^3 \\ \text{with} \quad \langle u, v \rangle_{H^1} &= \langle u, v \rangle + \sum_{i=1}^3 \langle \partial_i u, \partial_i v \rangle \end{aligned}$$

whose dual is commonly designated by

$$H^{-1}(\Omega)^3 := (H^1_0(\Omega)^3)'$$

Now the bilinear form

$$\mathfrak{a}: \begin{cases} H_0^1(\Omega)^3 \times H_0^1(\Omega)^3 \to \mathbb{R} \\ (u,v) \mapsto \sum_{i=1}^3 \langle \partial_i u, \partial_i v \rangle \end{cases}$$

induces the *Dirichlet-Laplace*³ operator given by

$$\Delta_D^{\Omega} : \begin{cases} & H_0^1(\Omega)^3 \to H^{-1}(\Omega)^3 \\ & v \mapsto -\mathfrak{a}(\cdot, v) \end{cases}$$

4 Proposition. Δ_D^{Ω} is well-defined and bounded.

$$\begin{split} |-\mathfrak{a}(u,v)| &\leq \sum_{i=1}^{3} |\langle \partial_{i}u, \partial_{i}v \rangle | \leq \sum_{i=1}^{3} ||\partial_{i}u|| ||\partial_{i}v|| \\ &\leq \left(\sum_{i=1}^{3} ||\partial_{i}u||^{2}\right)^{\frac{1}{2}} \left(\sum_{i=1}^{3} ||\partial_{i}v||^{2}\right)^{\frac{1}{2}} \\ &\leq ||u||_{H^{1}} ||v||_{H^{1}} \\ &\Rightarrow ||-\mathfrak{a}(\cdot,v)|| \leq ||v||_{H^{1}} \quad \text{and} \quad ||\Delta_{D}^{\Omega}|| \leq 1 \end{split}$$

³This name reflects the fact that Δ_D^{Ω} is defined on the function space $H_0^1(\Omega)$ consisting of functions u satisfying the Dirichlet boundary condition $u|_{\delta\Omega} = 0$.

We remark that the operator

$$\delta - \Delta_D^{\Omega} : \begin{cases} H_0^1(\Omega)^3 \to H^{-1}(\Omega)^3 \\ v \mapsto \delta \langle \cdot, v \rangle + \mathfrak{a}(\cdot, v) \end{cases}$$

is an isomorphism for all $\delta > 0$. If the domain Ω is bounded, Poincaré's inequality shows that even Δ_D^{Ω} is an isomorphism.

4 Stokes operator

Now that we have a useful definition of the Laplace operator we need to "extend" the Helmholtz projection such that its domain contains $H^{-1}(\Omega)$.

The space

$$\mathcal{V} := H^1_0(\Omega)^3 \cap L^2_\sigma(\Omega)$$

is a closed subspace of $H_0^1(\Omega)^3$, and hence a Hilbert space in its own right (endowed with $\langle \cdot, \cdot \rangle_{H^1}$).

5 Proposition.

$$L^2_{\sigma}(\Omega) = \overline{\mathcal{V}}^{||\cdot||_{L^2}}$$

Proof. Since $\mathcal{D}_{\sigma}(\Omega) \subseteq \mathcal{V}$ this follows from proposition 2.

This already indicates that \mathcal{V} is still large enough a space to be useful It will also prove useful later on. Let $\tilde{J}: \mathcal{V} \to H^1_0(\Omega)^3$ be the canonical injection and let $\tilde{\mathbb{P}}: H^{-1}(\Omega) \to \mathcal{V}'$ be its adjoint. Clearly both are continuous mappings.

6 Proposition. $\tilde{\mathbb{P}}$ and \mathbb{P} are consistent in the following sense

$$\mathbb{P}(\langle \cdot, v \rangle) = \langle \cdot, \mathbb{P}v \rangle \quad \forall v \in L^2(\Omega)^3$$

Proof. For all $u \in \mathcal{V}$ we have

$$\tilde{\mathbb{P}}(\langle \cdot, v \rangle)(u) = \left\langle \tilde{J}u, v \right\rangle = \langle Ju, v \rangle = \langle u, \mathbb{P}v \rangle$$

7	Prop	osition.	The	operator
---	------	----------	-----	----------

$$A_0: \begin{cases} \mathcal{V} \to \mathcal{V}' \\ v \mapsto -\tilde{\mathbb{P}} \Delta_D^\Omega \tilde{J} v \end{cases}$$

is bounded and self-adjoint in $(\mathcal{V}, \langle \cdot, \cdot \rangle_{H^1})$, and $A_0 v = \mathfrak{a}(\cdot, v)$ where \mathfrak{a} is the bilinear form from section 3.

Proof. (1) A_0 is composed of bounded operators, hence bounded.

(2) For all $u, v \in \mathcal{V}$ we have

$$(A_0 v)(u) = (-\tilde{\mathbb{P}}\Delta_D^\Omega \tilde{J}v)(u) = -(\Delta_D^\Omega \tilde{J}v)(\tilde{J}u)$$

= $\mathfrak{a}(\tilde{J}u, \tilde{J}v) = \mathfrak{a}(u, v)$

(3) A_0 is defined on the entire Hilbert space \mathcal{V} (i.e. bounded), hence self-adjointness will follow from symmetry. But it is clear from (2) that A_0 is symmetric.

8 Definition. The Stokes operator is defined by

$$D(A) := \{ v \in \mathcal{V} \mid A_0 v \in L^2_{\sigma}(\Omega) \}$$
$$:= \{ v \in \mathcal{V} \mid \exists u \in L^2_{\sigma}(\Omega) : A_0 v = \langle \cdot, u \rangle \}$$
$$A : D(A) \to L^2_{\sigma}(\Omega), \quad v \mapsto u$$

9 Theorem. The Stokes operator is self-adjoint in $(L^2_{\sigma}(\Omega), \langle \cdot, \cdot \rangle)$, generates an analytic semigroup $(e^{-tA})_{t \geq 0}$, and satisfies

$$D(A) = \{ v \in \mathcal{V} \mid \exists \pi \in \mathcal{D}'(\Omega) : \nabla \pi \in H^{-1}(\Omega)^3 \\ and \quad -\Delta_D^{\Omega} v + \nabla \pi \in L^2_{\sigma}(\Omega) \} \\ := \{ v \in \mathcal{V} \mid \exists \pi \in \mathcal{D}'(\Omega) : \nabla \pi \in H^{-1}(\Omega)^3 \\ and \exists u \in L^2_{\sigma}(\Omega) : -\Delta_D^{\Omega} v + \nabla \pi = \langle \cdot, u \rangle \} \\ Av = u$$

Proof. (1) By proposition 5 it follows that $\mathfrak{b} := \mathfrak{a}|_{\mathcal{V}\times\mathcal{V}}$ is a densely-defined bilinear form on $L^2_{\sigma}(\Omega)$. It is also:

- (i) accretive, as $\mathfrak{b} \geq 0$,
- (ii) closed, since $D(\mathfrak{b}) = \mathcal{V}$, $|| \cdot ||_{\mathfrak{b}} = || \cdot ||_{H^1}$ and we have seen before that $(\mathcal{V}, \langle \cdot, \cdot \rangle_{H^1})$ is complete,
- (iii) continuous in the sense that $|\mathfrak{b}(u,v)| \leq C||u||_{\mathfrak{b}}||v||_{\mathfrak{b}}$; this is shown by proposition 4.

Under these conditions, the operator associated with the adjoint form \mathfrak{b}^* is simply the adjoint of the operator associated with \mathfrak{b} (see e.g. OUHABAZ [3]).

A is by its very definition the operator associated with \mathfrak{b} . And \mathfrak{b} is symmetric, hence $\mathfrak{b}^* = \mathfrak{b}$ and it follows that $A^* = A$, $D(A^*) = D(A)$, that is, A is self-adjoint.

(2) Another result from the theory of sesquilinear forms is that if A is the operator associated with a denselydefined bilinear form \mathfrak{b} satisfying (i)-(iii), -A generates a (strongly continuous contraction) semigroup on $L^2_{\sigma}(\Omega)$ which is holomorphic in an open sector

$$\{z \in \mathbb{C} \mid 0 \neq z \text{ and } |\arg(z)| < \theta\}$$

In particular it is analytic on $\mathbb{R}_{>0}$.

(3) Let Av = u. Then

$$\begin{split} &-\tilde{\mathbb{P}}\Delta_D^{\Omega}v = \langle \cdot, u \rangle \stackrel{6}{=} \tilde{\mathbb{P}}(\langle \cdot, u \rangle) \\ \Rightarrow &\tilde{\mathbb{P}}\left(-\Delta_D^{\Omega}v - \langle \cdot, u \rangle\right) = 0 \\ \Rightarrow &-\Delta_D^{\Omega}v - \langle \cdot, u \rangle \in \ker(\tilde{\mathbb{P}}) \end{split}$$

It remains to show that the kernel consists of gradients:

$$\ker(\tilde{\mathbb{P}}) = \{ \phi \in H^{-1}(\Omega)^3 \mid \tilde{\mathbb{P}}\phi = 0 \}$$
$$= \{ \phi \in H^{-1}(\Omega)^3 \mid \phi|_{\mathcal{V}} = 0 \}$$
$$\stackrel{2}{=} \{ \phi \in H^{-1}(\Omega)^3 \mid \phi|_{\mathcal{D}_{\sigma}(\Omega)} = 0 \}$$
$$\stackrel{1}{=} \{ \phi \in H^{-1}(\Omega)^3 \mid \exists \pi \in \mathcal{D}'(\Omega) : \phi = \nabla \pi \}$$

5 General case

Let $p \in (1, \infty)$, $1 = \frac{1}{p} + \frac{1}{p'}$, $n \ge 2$ and $\Omega \subseteq \mathbb{R}^n$ be an arbitrary domain. Let $\langle u, v \rangle := \int_{\Omega} u \cdot v \ d\mu$. Define

$$\dot{W}^{1,p}(\Omega) := \{ [u] = u + \mathbb{C} \mid u \in L^p_{loc}(\Omega)$$

and $\nabla u \in L^p(\Omega)^n \}$
$$||[u]||_{\dot{W}^{1,p}} := ||\nabla u||_{L^p}$$

This is a Banach space, as is its dual $\dot{W}^{1,p}(\Omega)'$. The gradient operator

$$\nabla_p : \dot{W}^{1,p}(\Omega) \to L^p(\Omega)^n, \quad u \mapsto \nabla u$$

is an isometry pretty much by definition of the norms. We isometrically identify $L^{p'}(\Omega)$ and $(L^{p}(\Omega))'$, and it follows that the adjoint

$$\nabla'_p: L^{p'}(\Omega)^n \to (\dot{W}^{1,p}(\Omega))'$$

is surjective with norm ≤ 1 . Define

$$G^{p}(\Omega) := \operatorname{ran}(\nabla_{p}) \subseteq L^{p}(\Omega)^{n}$$
$$L^{p}_{\sigma}(\Omega) := \ker(\nabla'_{p'}) \subseteq L^{p}(\Omega)^{n}$$

Clearly this definition of G^p agrees with the one in the introduction. The following proposition shows that this also applies to L^p_{σ} .

10 Proposition.

$$L^p_{\sigma}(\Omega) = \overline{\mathcal{D}_{\sigma}(\Omega)}^{||\cdot||_{L^p}}$$

Proof. (1) Let $\phi \in \mathcal{D}_{\sigma}(\Omega)$. Then for all $u \in \dot{W}^{1,p'}(\Omega)$, we have

$$(\nabla'_{p'}\phi)(u) = \langle \nabla_{p'}u, \phi \rangle = -\langle u, \operatorname{div}(\phi) \rangle = 0$$

$$\Rightarrow \phi \in \operatorname{ker}(\nabla'_{p'}) = L^p_{\sigma}$$

(2) In order to prove density it is sufficient to show that the values of a functional on $L^p_{\sigma}(\Omega)$ is already determined by its values on $\mathcal{D}_{\sigma}(\Omega)$. Equivalently, we show that the following assertion holds for all $v \in$ $L^{p'}(\Omega)^n \cong (L^p(\Omega)^n)':$

$$\langle \cdot, v \rangle |_{\mathcal{D}_{\sigma}(\Omega)} = 0 \quad \Rightarrow \quad \langle \cdot, v \rangle |_{L^{p}_{\sigma}(\Omega)} = 0$$

By the assumption and fact 1, we have $v = \nabla_{p'} p$ for a $p \in L^{p'}(\Omega)$, hence

$$\forall u \in L^p_{\sigma}(\Omega): \quad \langle u, v \rangle = \langle u, \nabla_{p'} p \rangle = \left\langle \nabla'_{p'} u, p \right\rangle = 0$$

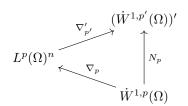
11 Theorem. We have the decomposition

$$L^p(\Omega)^n = L^p_{\sigma}(\Omega) \oplus G^p(\Omega)$$

if and only if the operator

$$N_p: \dot{W}^{1,p}(\Omega) \to (\dot{W}^{1,p'}(\Omega))', \quad N_p:=\nabla'_{p'}\nabla_p$$

is bijective.



In that case,

$$\mathbb{P}_p: L^p(\Omega)^n \to L^p_{\sigma}(\Omega), \quad \mathbb{P}_p:= \mathrm{id} - \nabla_p N_p^{-1} \nabla'_{p'}$$

is a projection with kernel $G^p(\Omega)$. It is called the Helmholtz projection in $L^p(\Omega)$.

Proof. (\Rightarrow) Since the sum is direct, we have

$$\ker(\nabla'_{p'}) \cap \operatorname{ran}(\nabla_p) = \{0\}$$

and N_p is injective. Also,

$$\ker(\nabla'_{p'}) + \operatorname{ran}(\nabla_p) = L^p(\Omega)^n$$

$$\Rightarrow \operatorname{ran}(N_p) = \nabla'_{p'}(\operatorname{ran}(\nabla_p)) = \nabla'_{p'}(L^p(\Omega)^n) = \operatorname{ran}(\nabla'_{p'})$$

and N_p is surjective since $\nabla'_{p'}$ is so. (\Leftarrow) If N_p is bijective, its inverse is bounded by the open mapping theorem, hence \mathbb{P}_p is bounded. Clearly,

$$\mathbb{P}_p|_{L^p_{\sigma}(\Omega)} = \mathrm{id}$$

and

$$\mathbb{P}_p v = 0 \Rightarrow v \in \operatorname{ran}(\nabla_p) = G^p(\Omega)$$
$$v = \nabla_p u \in G^p(\Omega) \Rightarrow \mathbb{P}_p v = v - \underbrace{\nabla_p N_p^{-1} N_p u}_{=\nabla_p u = v} = 0$$
$$\Rightarrow \ker(\mathbb{P}_p) = G^p(\Omega)$$

Hence, the sum $L^p_{\sigma}(\Omega) + G^p(\Omega)$ is direct, and and since every $v \in L^p(\Omega)^n$ can be written as

$$v = \underbrace{\mathbb{P}_p v}_{\in L^p_{\sigma}(\Omega)} + \underbrace{(v - \mathbb{P}_p v)}_{\in \ker(\mathbb{P}_p) = G^p(\Omega)}$$

it is entire space.

Note that for $\phi \in \mathcal{D}(\Omega), v \in \dot{W}^{1,p'}(\Omega)$ we have

$$(N_p\phi)(v) = \langle \nabla_p \phi, \nabla_{p'} v \rangle = \langle -\Delta \phi, v \rangle$$

hence $-N_p$ can be interpreted as a weak formulation of the Laplace operator.

From chapter 2, we see that for n = 3, N_2 is always bijective and \mathbb{P}_2 is just the orthogonal projection \mathbb{P} onto $L^2_{\sigma}(\Omega)$.

Finally we remark that \mathbb{P}_p can be extended in a similar way as \mathbb{P} was extended to $\tilde{\mathbb{P}}$ in chapter 4, see HAAK and KUNSTMANN [1] for details.

References

- [1] Bernhard H. Haak and Peer Chr. Kunstmann. On Kato's method for Navier-Stokes equations. 2008.
- [2] Sylvie Monniaux. Navier-Stokes equations in arbitrary domains: the Fujita-Kato scheme. Mathematical Research Letters, 13:455–461, 2006.
- [3] El Maati Ouhabaz. Analysis of Heat Equations on Domains. London Mathematical Society Monographs, 2005.
- [4] Christian G. Simader and Hermann Sohr. A new Approach to the Helmholtz Decomposition and the Neumann Problem in L_p-Spaces for Bounded and Exterior Domains. Math. Problems Relating to the Navier– Stokes Equations, 11:1–36, 1992.