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Abstract. After a brief review of cohomology theory we define the Stiefel-
Whitney classes associated to a vector bundle and prove some consequences
from their axioms. We proceed to compute the Stiefel-Whitney classes of
projective space and apply the result to show non-existence of real division
algebras in most dimensions.

Notation. We denote by εn the trivial n-dimensional vector bundle over a given
space. Isomorphism in the respective category is denoted by – (e.g. homeomor-
phism for topological spaces, isomorphism of Abelian groups, equivalence of bundles
over a fixed base space).

Acknowledgements. Sections 2 and 3 are based on the presentation in [MS74,
§4].

1. Cohomology Theory

Since the Stiefel-Whitney classes of a vector bundle are invariants which live in the
cohomology groups of the base space we shall give a brief review of cohomology
theory (cf. [Hat02], [Lü05] or [May99] for more detailed accounts).

Axioms. A cohomology theory with coefficients in an R-moduleM is a contravari-
ant functor

H˚p¨;Mq : Topological pairsÑ Z-graded Abelian groups

together with natural transformations

B : HkpA;Mq Ñ Hk`1pX,A;Mq

satisfying the Eilenberg-Steenrod axioms1:

(C1) homotopy-invariance: any two homotopic maps induce the same morphism

(C2) long exact sequence: any pair pX,Aq induces a long exact sequence of the form

. . . // HkpX,A;Mq
id˚

// HkpX;Mq
incl˚ // HkpA;Mq

B // Hk`1pX,A;Mq // . . .

(C3) excision: given subspaces clpZq Ď intpAq Ď X we have induced isomorphisms

HkpX,A;Mq
incl˚

–
// HkpXzZ,AzZ;Mq

1We write X for a pair pX,Hq and we denote by f˚ the morphism Hkpfq induced by a map f .
1
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(C4) product axiom: given a family of topological pairs pXi, Aiq we have induced
isomorphisms

Hkp
š

ipXi, Aiq;Mq

ś

i incl
˚
i //

ś

iH
kpXi, Ai;Mq

An ordinary cohomology theory also satisfies the following axiom:

(C5) dimension axiom:

Hkpt˚u;Mq “

#

M ,k “ 0

0 , k ‰ 0

1 Theorem. There exists a cohomology theory for an arbitary coefficient module,
called singular cohomology .

Reduced Cohomology. For calculations it is often a nuisance that the coho-
mology groups of a point are trivial. This motivates the definition of the reduced
cohomology groups

H̃kpX;Mq :“ HkpX, t˚u;Mq

2 Proposition.

HkpX;Mq – H̃kpX;Mq ‘Hkpt˚u;Mq

In particular, points (and hence contractible spaces) have trivial reduced cohomol-
ogy.

Proof. By the long exact sequence (C2)

. . . // H̃kpX;Mq
id˚

// HkpX;Mq
incl˚ // Hkpt˚u;Mq

B // H̃k`1pX;Mq // . . .

Now, every space retracts to a point, i.e. const˚ ˝ incl “ idt˚u. Hence incl
˚
˝ const˚˚ “

idHk and we have a split exact sequence

0 // H̃kpX;Mq
id˚

// HkpX;Mq
incl˚ // Hkpt˚u;Mq
const˚

˚

oo // 0

�

There is also a long exact sequence for reduced cohomology:

3 Theorem. Any pair pX,Aq induces a long exact sequence of the form

. . . // HkpX,A;Mq // H̃kpX;Mq // H̃kpA;Mq // Hk`1pX,A;Mq // . . .

(Observe that the base point ˚ has to be chosen in A.)

Proof. By functoriality, naturality and the long exact sequence (C2) we have the
following diagram with exact rows and columns:

. . . // HkpX,A;Mq //

id

��

H̃kpX;Mq //

id˚

��

H̃kpA;Mq //

id˚

��

Hk`1pX,A;Mq //

id

��

. . .

. . . // HkpX,A;Mq
id˚

//

incl˚“0

��

HkpX;Mq
incl˚ //

incl˚

��

HkpA;Mq
B //

incl˚

��

Hk`1pX,A;Mq //

incl˚“0

��

. . .

. . . // Hkpt˚u, t˚u;Mq
id˚

// Hkpt˚u;Mq
incl˚ // Hkpt˚u;Mq

B // Hk`1pt˚u, t˚u;Mq // . . .

The existence of the dotted maps in the first row follows from diagram chasing. �
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Spheres. Long exact sequences are the main tool in computing the cohomology of
spaces.

Example 4. The reduced cohomology groups of the spheres are given by

H̃kpSn;Mq “

#

M ,n “ k

0 , otherwise

Proof. (1) The assertion for S0 “ t˘1u is immediate from the product and dimen-
sion axioms (C4) and (C5).

(2) On the other hand it follows from the long exact reduced cohomology sequence
for the pair pDn`1, Snq that

H̃kpSn;Mq – Hk`1pDn`1, Sn;Mq

(3) Now consider the “wrap-around map” f : pDn`1, Snq Ñ pSn`1, t˚uq which
is a homeomorphism away from the boundary (it is the inverse of stereographic
projection from ˚). We define subspaces

Sn Ď pDn`1z
3

4
Dn`1q

loooooooomoooooooon

“:Z

Ď
1

2
Dn`1

loomoon

“:A

Ď Dn`1,

˚ P fpZq Ď fpAq Ď Sn`1

and get a commutative diagram

pDn`1, Skq
f

//

»

��

pSn`1, t˚uq

»

��

pDn`1, Aq
f

// pSn`1, fpAqq

pDn`1zZ,AzZq
f

–
//

OO

pSn`1zfpZq, fpAqzfpZqq

OO

The upper inclusions are homotopy equivalences, the lower inclusions satisfy the
hypotheses of excision and the bottom restriction is a homeomorphism. Hence they
induce isomorphism of the cohomology groups and it follows that f induces the first
isomorphism in

H̃k`1pSn`1;Mq – Hk`1pDn`1, Sn;Mq – H̃kpSn;Mq

The claim now follows by induction. �

Multiplicative Structure. A multiplicative structure on a cohomology theory
H˚p¨;Mq with coefficients in an R-module M is given by a family of R-linear maps

Y : HkpX,A;Mq ˆH lpX,B;Mq Ñ Hk`lpX,AYBq

(called the cup product) together with a unit 1X P H0pX;Mq satisfying the follow-
ing axioms:

(M1) associativity

(M2) graded commutativity:

xY y “ p´1qkly Y x p@x P HkpX,A;Mq, y P H lpX,B;Mqq

(M3) naturality
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(M4) compatibility with the boundary map: if pX,Aq is any pair, then

Bpaq Y x “ BpaY incl˚pxqq p@a P HkpA;Mq, x P H lpX;Mqq

We will usually omit the Y symbol from products. The product turns the groups

H˚pX,A;Mq :“
8
à

k“0

HkpX,A;Mq and H˚˚pX,A;Mq :“
8
ź

k“0

HkpX,A;Mq

into unital graded commutative rings, called the cohomology rings.

5 Lemma. Elements of the form 1X ` x where the zeroth coefficient of x vanishes
are invertible in H˚˚pX,A;Mq.

6 Theorem. Singular cohomology admits a multiplicative structure if M “ R is a
commutative unital ring.

Projective Space. The following theorem describes the structure of the singu-
lar cohomology ring of projective space with Z2-coefficients. Note that this is a
commutative ring since ´1 “ 1 in Z2.

7 Theorem. The cohomology groups of projective space with Z2-coefficients are
given by

HkpPn;Z2q “

#

Z2 , k ď n

0 , otherwise

and the higher cohomology groups are generated by the respective powers of the
generator 0 ‰ a P H1pPn;Z2q.

That is, H˚pPn;Z2q is the unital graded commutative ring generated by a single
element a of degree 1 subject to the relation an`1 “ 0.

2. Stiefel-Whitney Classes

Axioms. The Stiefel-Whitney classes are cohomology classes wkpξq P HkpX;Z2q

assigned to each vector bundle ξ : E Ñ X such that the following axioms are
satisfied:

(S1) w0pξq “ 1X

(S2) wkpξq “ 0 if ξ is an n-dimensional vector bundle and k ą n

(S3) naturality: wkpξq “ f˚pwkpηqq if there is a bundle map ξ Ñ η with base map f

(S4) Whitney product axiom: wkpξ ‘ ηq “
ř

i`j“k wipξqwjpηq

(S5) non-triviality: w1pγ
1
1q ‰ 0 where γ11 is the canonical line bundle over P 1

If we define the total Stiefel-Whitney class as wpξq :“ pwkpξqq P H˚˚pX;Z2q, then
the fourth axiom can be equivalently stated as follows:

(S4’) wpξ ‘ ηq “ wpξqwpηq

Observe that every total Stiefel-Whitney class is invertible by axiom (S1) and
Lemma 5. If wpξq “ 1 then we say that the total Stiefel-Whitney class is triv-
ial .
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Finally we define the Stiefel-Whitney classes of a manifoldM in terms of its tangent
bundle:

wipMq :“ wipτM q and wpMq :“ wpτM q

Consequences. The following properties follow directly from the axioms.

8 Proposition. Two equivalent vector bundles have equal Stiefel-Whitney classes.

Proof. A bundle equivalence is a bundle map inducing the identity as its base map;
hence the claim follows by naturality (S3). �

9 Proposition. Trivial vector bundles have trivial total Stiefel-Whitney class.

Proof. Any trivial vector bundle over X is equivalent to a vector bundle of the form
X ˆ Rn. Thus the diagram

X ˆ Rn
proj2 //

proj1

��

Rn

��

X // t˚u

shows that there is a bundle map to a vector bundle over a point. But we know
that all higher cohomology groups of a point are trivial. Hence the claim follows
from naturality (S3). �

Recall that a manifold is called parallelizable if its tangent bundle is trivial. Thus
the Stiefel-Whitney classes of a manifold measure obstruction to parallelizability:

10 Corollary. Parallelizable manifolds have trivial Stiefel-Whitney class.

11 Corollary (Stability). The Stiefel-Whitney classes do not change upon addi-
tion of a trivial bundle.

Proof. Apply the Whitney product axiom (S4). �

12 Corollary. Let ξ be an n-dimensional Euclidean bundle. If ξ possesses k
nowhere linearly dependent sections, then the Stiefel-Whitney classes wipξq van-
ish already if i ą n´ k.

Proof. The k nowhere linearly dependent sections span a trivial k-dimensional sub-
bundle η Ď ξ. By means of the continuous inner product we can construct a pn´kq-
dimensional orthogonal complement ηK. We have η ‘ ηK “ ξ, hence wpξq “ wpηKq
by stability, and the claim follows from axiom (S2). �

Tangent and Normal Bundle. LetN ĎM be a smooth submanifold of a smooth
Riemannian manifold. Then the tangent bundle of N is a subbundle of the tangent
bundle of M restricted to N , i.e. τN Ď τM |N and, as before, by means of the
smooth inner product we can construct an orthogonal complement νMN called the
normal bundle of N ĎM , and τN ‘ νMN – τM |N .

13 Corollary (Whitney Duality Theorem). IfN ĎM is a smooth submanifold
of a manifold in Euclidean space (i.e. M Ď Rn open with the identity chart), then

wpNq “ wpνMN q
´1

Example 14. The tangent bundle of a sphere has trivial total Stiefel-Whitney
class.



6 MICHAEL WALTER

Proof. The normal bundle for the standard embedding Sn Ď Rn`1 is trivial. �

In particular, the tangent bundle of a sphere cannot be distinguished from a trivial
bundle over the sphere by means of their Stiefel-Whitney classes.

3. Bundles over Projective Space

Canonical Line Bundle. We will now calculate the Stiefel-Whitney classes of the
canonical line bundles directly from the axioms:

15 Proposition. The total Stiefel-Whitney class of the canonical line bundle γ1n
over Pn is given by

wpγ1nq “ 1` a

where a denotes the generator of H˚pPn;Z2q (cf. Thm. 7).

Proof. We have an obvious bundle map

Epγ11q //

γ1
1

��

Epγ1nq

γ1
n

��

P 1

incl
// Pn

Therefore

0
(S5)
‰ w1pγ

1
1q “ incl˚pw1pγ

1
nqq

and this shows that w1pγ
1
nq “ a, hence wpγ1nq “ 1 ` a since the bundle is one-

dimensional. �

Tangent Bundle. By definition the canonical line bundle over Pn is a subbundle
of the trivial pn ` 1q-dimensional bundle. We can thus consider its orthogonal
complement γKn which is given by

EpγKn q :“ tprxs, vq P P
n ˆ Rn`1 : x K vu

proj1 // Pn

16 Proposition. The total Stiefel-Whitney class of the orthogonal complement
bundle is given by

wpγKn q “ 1` a` a2 ` . . .` an

Proof. Since the Whitney sum γ1n ‘ γ
K
n “ εn`1 is trivial (by construction) we have

wpγKn q “ wpγ1nq
´1 “ p1` aq´1 “ 1` a` a2 ` . . .` an

�

In particular, this shows that all of the first n Stiefel-Whitney classes of an n-
dimensional vector bundle may be non-zero.

17 Proposition. The tangent bundle τPn of Pn is equivalent to the homomorphism
bundle Hompγ1n, γ

K
n q.
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Proof. Recall that the tangent bundle of projective space can be defined as follows:

TPn :“ pTSn :“ tpx, vq P Sn ˆ Rn`1 : x K vuq{t˘1u // Sn{t˘1u “: Pn

Note that every point of Sn naturally represents a point in the canonical line bundle
γ1n and every point of the tangent plane of Sn naturally represents a point in the
orthogonal complement bundle γKn . This suggest defining a map

TPn Ñ Hompγ1n, γ
K
n q, rpx, vqs ÞÑ px ÞÑ vq

and it is straightforward to verify that all equivalence relations fit together in such
a way that this map is a well-defined bundle equivalence. �

18 Theorem. The following bundles are equivalent:

τPn ‘ ε1 –
n`1
à

k“1

γ1n

In particular, the total Stiefel-Whitney class of projective space is given by

wpPnq “ p1` aqn`1

Proof. The endomorphism bundleHompγ1n, γ
1
nq is trivial (consider the non-vanishing

identity section). Thus

τPn ‘ ε1
17
– Hompγ1n, γ

K
n q ‘Hompγ1n, γ

1
nq – Hompγ1n, γ

K
n ‘ γ

1
nq

–Hompγ1n, ε
n`1q –

n`1
à

k“1

Hompγ1n, ε
1q –

n`1
à

k“1

γ1n

where the last equivalence is induced by the continuous inner product of the Eu-
clidean bundle γ1n. �

19 Corollary (Stiefel). The total Stiefel-Whitney class of the projective space
Pn is trivial if and only if pn` 1q is a power of 2.

Proof. Write n` 1 “ 2km with odd m. By the Frobenius homomorphism we have

wpPnq “ p1` aqn`1 “ p1` a2
k

qm “ 1` a2
k

`

ˆ

m

2

˙

a2¨2
k

` . . .

It follows that wpPnq is trivial if and only if 2k “ n` 1. �

Applications. A (not necessarily associative) algebra is called a division algebra
if every equation of the form ax “ b and xa “ b with nonzero a and arbitary b has
a unique solution.

20 Lemma. A finite-dimensional algebra is a division algebra if and only if it has
no zero divisors.

Proof. Left and right multiplication are linear endomorphisms of a finite-dimensional
vector space, hence injective if and only if surjective. �

21 Theorem (Stiefel). Suppose there exists a real division algebra of dimension
n. Then the projective space Pn´1 is parallelizable and n is a power of 2.

Proof. Up to isomorphism, any real division algebra of dimension n is of the form
pRn,`q with a bilinear product p : Rn ˆ Rn Ñ Rn without zero divisors. Let us
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denote the standard basis of Rn by peiq. Since p has no zero divisors, it induces
automorphisms pp¨, eiq and

vi :“ pp¨, eiqpp¨, e1q
´1

Note that v1 “ id and pvipxqq are linearly independent for x ‰ 0:
ÿ

λivipxq “ 0 ñ ppx,
ÿ

λieiq “ 0 ñ λi ” 0 or x “ 0

We can thus define sections of the bundle Hompγ1n´1, γ
K
n´1q – τPn´1 as follows:

siprxsqpyq :“ orthogonal projection of vipyq along xxy

Since s1 ” 0 it follows that s2, . . . , sn are n´1 nowhere linearly dependent sections.
We have thus proved that Pn´1 is parallelizable, and now Cor. 19 shows that n
must be a power of 2. �

In fact, one can show that the projective space Pn´1 is parallelizable only for n “ 1,
2, 4 or 8. It follows that finite-dimensional real division algebras exist precisely in
these dimensions!
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