STIEFEL-WHITNEY CLASSES
I. AXIOMS AND CONSEQUENCES

MICHAEL WALTER

ABsTRACT. After a brief review of cohomology theory we define the Stiefel-
Whitney classes associated to a vector bundle and prove some consequences
from their axioms. We proceed to compute the Stiefel-Whitney classes of
projective space and apply the result to show non-existence of real division
algebras in most dimensions.

Notation. We denote by €” the trivial n-dimensional vector bundle over a given
space. Isomorphism in the respective category is denoted by =~ (e.g. homeomor-
phism for topological spaces, isomorphism of Abelian groups, equivalence of bundles
over a fixed base space).

Acknowledgements. Sections 2 and 3 are based on the presentation in [MST4,

§4].

1. CoHOMOLOGY THEORY

Since the Stiefel-Whitney classes of a vector bundle are invariants which live in the
cohomology groups of the base space we shall give a brief review of cohomology
theory (cf. [Hat02], [LG05] or [May99] for more detailed accounts).

Axioms. A cohomology theory with coefficients in an R-module M is a contravari-
ant functor

H*(-; M) : Topological pairs — Z-graded Abelian groups
together with natural transformations
0: HY(A; M) — HM (X, A; M)
satisfying the FEilenberg-Steenrod a:m'omsﬂ
(C1) homotopy-invariance: any two homotopic maps induce the same morphism

(C2) long exact sequence: any pair (X, A) induces a long exact sequence of the form
e HR(OX, A M) S R0 M) 2 (A M) s BR Y (XA M) ——s
(C3) excision: given subspaces cl(Z) < int(A) € X we have induced isomorphisms

HE(X, A M) 255 R (X\2, A\Z; M)

IWe write X for a pair (X, ) and we denote by f* the morphism H¥(f) induced by a map f.
1
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(C4) product axiom: given a family of topological pairs (X;, A;) we have induced
isomorphisms

ol
I, incl?

HM([ (X3, Ag); M) [T, H*(X;, Ai; M)

An ordinary cohomology theory also satisfies the following axiom:
(C5) dimension axiom:

M k=0

H*({x}; M) = {0 k20

1 Theorem. There exists a cohomology theory for an arbitary coefficient module,
called singular cohomology.

Reduced Cohomology. For calculations it is often a nuisance that the coho-
mology groups of a point are trivial. This motivates the definition of the reduced
cohomology groups

H*(X; M) == H*(X, {}; M)
2 Proposition.
H*(X; M) = H*(X; M) ® H*({+}; M)
In particular, points (and hence contractible spaces) have trivial reduced cohomol-
ogy.
Proof. By the long exact sequence (C2)
e HROXG M) S RO M) Y R () M) — s BRY(XG M) ——

Now, every space retracts to a point, i.e. consty oincl = id,,. Hence incl® o const} =
idg» and we have a split exact sequence

0 —— BF(X; M) —L BF(X M) 55 Y ({s): M) —— 0

k3
const ¥

There is also a long exact sequence for reduced cohomology:

3 Theorem. Any pair (X, A) induces a long exact sequence of the form

. —— H¥(X,A; M) —— H*(X; M) —— H¥(A; M) —— HFY(X, A M) —— .
(Observe that the base point * has to be chosen in A.)

Proof. By functoriality, naturality and the long exact sequence (C2) we have the
following diagram with exact rows and columns:

» HF (X, A; M) » H*(X; M) » H*(A; M) » HF (X, A; M) .

| | | Jo

S HRMOX A M) — Y R M) Y R M) RN (XA M)

Jincl* =0 Jincl* Jincl* Jincl* =0

e HR({), L M) S BR (G M) A BR (M) — s HEF (), {5} M) ——

The existence of the dotted maps in the first row follows from diagram chasing. [
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Spheres. Long exact sequences are the main tool in computing the cohomology of
spaces.

Example 4. The reduced cohomology groups of the spheres are given by

M n=k
0 ,otherwise

ff’“(S";M)—{

Proof. (1) The assertion for S° = {£1} is immediate from the product and dimen-
sion axioms (C4) and (C5).
(2) On the other hand it follows from the long exact reduced cohomology sequence
for the pair (D"*! S™) that

I:]k(Sn;M) ~ Hk+1(Dn+1,Sn;M)

(3) Now consider the “wrap-around map” f : (D"t S") — (S"+1 {«}) which
is a homeomorphism away from the boundary (it is the inverse of stereographic
projection from *). We define subspaces

Sn c (DnJrl\ZanLl) c %DnJrl c Dn+1’

——
=7 =:A

xe f(Z) < f(A) c 5"t
and get a commutative diagram

(Dn+175k) ;} (S”'H, {+})

: :

(D1, 4) ——L (541 f(4))

[, ]

(D"+1\Z, A\Z) —L (S"+1\f(Z2), f(A\F(2))

>~

The upper inclusions are homotopy equivalences, the lower inclusions satisfy the
hypotheses of excision and the bottom restriction is a homeomorphism. Hence they
induce isomorphism of the cohomology groups and it follows that f induces the first
isomorphism in

ﬁk+1(5n+1;M) ~ Hk+1(Dn+1,Sn;M) ~ f{k(sn’M)

The claim now follows by induction. O

Multiplicative Structure. A multiplicative structure on a cohomology theory
H*(-; M) with coefficients in an R-module M is given by a family of R-linear maps

u: H¥(X,A; M) x H{(X,B; M) — H**'(X, AU B)

(called the cup product) together with a unit 1x € H°(X; M) satisfying the follow-
ing axioms:

(M1) associativity
(M2) graded commutativity:
zoy=(-)"yovr  (Vzxe HY(X,A;M),ye H(X,B; M))

(M3) naturality
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(M4) compatibility with the boundary map: if (X, A) is any pair, then
d(a) U x = d(a U incl*(x)) (Vae H*(A; M),z € H(X; M))
We will usually omit the U symbol from products. The product turns the groups
H*(X,A; M) : (—BH’“XAM) and  H**(X,A; M) : HH’“XAM)

k=0 k=0

into unital graded commutative rings, called the cohomology rings.

5 Lemma. Elements of the form 1x + x where the zeroth coefficient of x vanishes
are invertible in H**(X, A; M).

6 Theorem. Singular cohomology admits a multiplicative structure if M = R is a
commutative unital ring.

Projective Space. The following theorem describes the structure of the singu-
lar cohomology ring of projective space with Zs-coefficients. Note that this is a
commutative ring since —1 = 1 in Zs.

7 Theorem. The cohomology groups of projective space with Zs-coefficients are

given by

Zg ,kén

0 ,otherwise

H*(P™Zs) = {
and the higher cohomology groups are generated by the respective powers of the
generator 0 # a € HY(P";Zs).

That is, H*(P™;Zs) is the unital graded commutative ring generated by a single
element a of degree 1 subject to the relation a”*! = 0.

2. STIEFEL- WHITNEY CLASSES

Axioms. The Stiefel-Whitney classes are cohomology classes wy, (&) € H¥(X; Zs)
assigned to each vector bundle £ : £ — X such that the following axioms are
satisfied:

S1) wo(§) = 1x

S2) wg(€) = 0 if £ is an n-dimensional vector bundle and k > n

(
(52) w
(S3) naturality: wy(€) = f*(wy (1)) if there is a bundle map £ — 7 with base map f
(S4) Whitney product axiom: wg(§@n) = X,y j—p wi(§)w; ()

(S5)

S5) non-triviality: wi(yi) # 0 where 4 is the canonical line bundle over P!

If we define the total Stiefel-Whitney class as w(§) := (wg(§)) € H**(X;Zz), then
the fourth axiom can be equivalently stated as follows:

(54) w(E®n) = w(&)w(n)

Observe that every total Stiefel-Whitney class is invertible by axiom (S1) and
Lemma If w(¢) = 1 then we say that the total Stiefel-Whitney class is triv-
ial.
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Finally we define the Stiefel-Whitney classes of a manifold M in terms of its tangent
bundle:

wi(M) :=w;(ty) and w(M) := w(Tar)

Consequences. The following properties follow directly from the axioms.
8 Proposition. Two equivalent vector bundles have equal Stiefel-Whitney classes.

Proof. A bundle equivalence is a bundle map inducing the identity as its base map;
hence the claim follows by naturality (S3). O

9 Proposition. Trivial vector bundles have trivial total Stiefel-Whitney class.

Proof. Any trivial vector bundle over X is equivalent to a vector bundle of the form
X x R™. Thus the diagram

proj,

X xR?* —— R"

X — {+}

shows that there is a bundle map to a vector bundle over a point. But we know
that all higher cohomology groups of a point are trivial. Hence the claim follows
from naturality (S3). O

Recall that a manifold is called parallelizable if its tangent bundle is trivial. Thus
the Stiefel-Whitney classes of a manifold measure obstruction to parallelizability:

10 Corollary. Parallelizable manifolds have trivial Stiefel-Whitney class.

11 Corollary (Stability). The Stiefel-Whitney classes do not change upon addi-
tion of a trivial bundle.

Proof. Apply the Whitney product axiom (S4). O

12 Corollary. Let £ be an n-dimensional Euclidean bundle. If £ possesses k
nowhere linearly dependent sections, then the Stiefel-Whitney classes w;(£) van-
ish already if ¢ > n — k.

Proof. The k nowhere linearly dependent sections span a trivial k-dimensional sub-
bundle n € £. By means of the continuous inner product we can construct a (n—k)-
dimensional orthogonal complement 7. We have n ®n* = £, hence w(¢) = w(nt)
by stability, and the claim follows from axiom (S2). O

Tangent and Normal Bundle. Let N € M be a smooth submanifold of a smooth
Riemannian manifold. Then the tangent bundle of N is a subbundle of the tangent
bundle of M restricted to N, i.e. 7§ S 7ap|N and, as before, by means of the
smooth inner product we can construct an orthogonal complement 4! called the
normal bundle of N € M, and 7v @ 1/]]\”,1 ~ 7| N.

13 Corollary (Whitney Duality Theorem). If N € M is a smooth submanifold
of a manifold in Euclidean space (i.e. M < R™ open with the identity chart), then
w(N) = wvy) ™

Example 14. The tangent bundle of a sphere has trivial total Stiefel-Whitney
class.
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Proof. The normal bundle for the standard embedding S™ < R"*! is trivial. O

In particular, the tangent bundle of a sphere cannot be distinguished from a trivial
bundle over the sphere by means of their Stiefel-Whitney classes.

3. BUNDLES OVER PROJECTIVE SPACE
Canonical Line Bundle. We will now calculate the Stiefel-Whitney classes of the
canonical line bundles directly from the axioms:

15 Proposition. The total Stiefel-Whitney class of the canonical line bundle ~;}
over P™ is given by

wyt)=1+a
where a denotes the generator of H*(P";Zs) (cf. Thm. [7).

Proof. We have an obvious bundle map

E(y) —— E(v,)

7 l J%ﬁ,

Pl pn

incl
Therefore

(85) 1 1 1
0 # wi(y) = inc™(wi(7,))

and this shows that w;(y}) = a, hence w(y}) = 1 + a since the bundle is one-
dimensional. O

Tangent Bundle. By definition the canonical line bundle over P" is a subbundle
of the trivial (n + 1)-dimensional bundle. We can thus consider its orthogonal
complement ;- which is given by

E(yt) = {([z],v) € P x R+ 1 g L o} 220 po

16 Proposition. The total Stiefel-Whitney class of the orthogonal complement
bundle is given by

wyr)=1+a+a*+...+a"

n+1 g trivial (by construction) we have

Proof. Since the Whitney sum v, @7+ = ¢
wip) =wa) ' =(1+a) " =1+a+a’+.. +a"

O
In particular, this shows that all of the first n Stiefel-Whitney classes of an n-
dimensional vector bundle may be non-zero.

17 Proposition. The tangent bundle 7p» of P" is equivalent to the homomorphism
bundle Hom(q},;h).
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Proof. Recall that the tangent bundle of projective space can be defined as follows:
TP" = (TS" := {(x,v) € S" x R*"*! .z L v})/{£1} —— S"/{£1} =: P"

Note that every point of S™ naturally represents a point in the canonical line bundle
yL and every point of the tangent plane of S™ naturally represents a point in the
orthogonal complement bundle ~;-. This suggest defining a map

TP" — Hom(v,, %), [(z,0)] = (2~ v)

and it is straightforward to verify that all equivalence relations fit together in such
a way that this map is a well-defined bundle equivalence. O

18 Theorem. The following bundles are equivalent:

n+1

1~ 1
Tpn @€ = (—Dvn
k=1

In particular, the total Stiefel-Whitney class of projective space is given by
w(P") = (1 +a)"*!

Proof. The endomorphism bundle Hom(~y}, v;}) is trivial (consider the non-vanishing
identity section). Thus

o
Tpr @€' = Hom(v,, v, ) @ Hom(v;,, v, ) = Hom(v,, v ©v5)

n+1 ntl
~Hom(v,,, €"*') = (P Hom(y,, ") = P 7,
k=1 k=1

where the last equivalence is induced by the continuous inner product of the Eu-
clidean bundle ;. O

19 Corollary (Stiefel). The total Stiefel-Whitney class of the projective space
P is trivial if and only if (n + 1) is a power of 2.

Proof. Write n + 1 = 2¥m with odd m. By the Frobenius homomorphism we have

w(P") = (1+a)" =1+ a2k)m —1+a® + (?)aQ'Zk +...

It follows that w(P™) is trivial if and only if 2¥ = n + 1. O

Applications. A (not necessarily associative) algebra is called a division algebra
if every equation of the form ax = b and xa = b with nonzero a and arbitary b has
a unique solution.

20 Lemma. A finite-dimensional algebra is a division algebra if and only if it has
no zero divisors.

Proof. Left and right multiplication are linear endomorphisms of a finite-dimensional
vector space, hence injective if and only if surjective. O
21 Theorem (Stiefel). Suppose there exists a real division algebra of dimension

n. Then the projective space P"~! is parallelizable and n is a power of 2.

Proof. Up to isomorphism, any real division algebra of dimension n is of the form
(R™, 4+) with a bilinear product p : R” x R™ — R™ without zero divisors. Let us
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denote the standard basis of R™ by (e;). Since p has no zero divisors, it induces
automorphisms p(-, ;) and
1

v i=p(e)p(-, en)”
Note that v; = id and (v;(x)) are linearly independent for x # 0:
Z)\ivi(x) =0 = p(x,Zx\iei) =0 = \=0orz=0
We can thus define sections of the bundle Hom(q}_;, vt ;) = 7pn-1 as follows:

si([z])(y) := orthogonal projection of v;(y) along (x)

Since s; = 0 it follows that ss, ..., s, are n—1 nowhere linearly dependent sections.
We have thus proved that P"~! is parallelizable, and now Cor. shows that n
must be a power of 2. O

In fact, one can show that the projective space P"~! is parallelizable only for n = 1,
2, 4 or 8. It follows that finite-dimensional real division algebras exist precisely in
these dimensions!
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