STIEFEL-WHITNEY CLASSES I. AXIOMS AND CONSEQUENCES

MICHAEL WALTER

ABSTRACT. After a brief review of cohomology theory we define the Stiefel-Whitney classes associated to a vector bundle and prove some consequences from their axioms. We proceed to compute the Stiefel-Whitney classes of projective space and apply the result to show non-existence of real division algebras in most dimensions.

Notation. We denote by ϵ^n the trivial *n*-dimensional vector bundle over a given space. Isomorphism in the respective category is denoted by \cong (e.g. homeomorphism for topological spaces, isomorphism of Abelian groups, equivalence of bundles over a fixed base space).

Acknowledgements. Sections 2 and 3 are based on the presentation in [MS74, §4].

1. Cohomology Theory

Since the Stiefel-Whitney classes of a vector bundle are invariants which live in the cohomology groups of the base space we shall give a brief review of cohomology theory (cf. [Hat02], [Lü05] or [May99] for more detailed accounts).

Axioms. A cohomology theory with coefficients in an R-module M is a contravariant functor

 $H^*(\cdot;M):$ Topological pairs $\to \mathbb{Z}\text{-}\mathrm{graded}$ Abelian groups

together with natural transformations

$$\partial: H^k(A; M) \to H^{k+1}(X, A; M)$$

satisfying the *Eilenberg-Steenrod axioms*¹:

(C1) homotopy-invariance: any two homotopic maps induce the same morphism

(C2) long exact sequence: any pair (X, A) induces a long exact sequence of the form

$$\dots \longrightarrow H^k(X, A; M) \xrightarrow{\operatorname{id}^*} H^k(X; M) \xrightarrow{\operatorname{incl}^*} H^k(A; M) \xrightarrow{\partial} H^{k+1}(X, A; M) \longrightarrow \dots$$

(C3) excision: given subspaces $cl(Z) \subseteq int(A) \subseteq X$ we have induced isomorphisms

$$H^k(X, A; M) \xrightarrow{\operatorname{incl}^*} H^k(X \setminus Z, A \setminus Z; M)$$

¹We write X for a pair (X, \emptyset) and we denote by f^* the morphism $H^k(f)$ induced by a map f.

(C4) product axiom: given a family of topological pairs (X_i, A_i) we have induced isomorphisms

$$H^{k}(\coprod_{i}(X_{i},A_{i});M) \xrightarrow{\prod_{i} \operatorname{incl}_{i}^{*}} \prod_{i} H^{k}(X_{i},A_{i};M)$$

An ordinary cohomology theory also satisfies the following axiom:

(C5) dimension axiom:

$$H^{k}(\{*\}; M) = \begin{cases} M & , k = 0\\ 0 & , k \neq 0 \end{cases}$$

1 Theorem. There exists a cohomology theory for an arbitrary coefficient module, called *singular cohomology*.

Reduced Cohomology. For calculations it is often a nuisance that the cohomology groups of a point are trivial. This motivates the definition of the *reduced* cohomology groups

$$\tilde{H}^{k}(X;M) := H^{k}(X,\{*\};M)$$

2 Proposition.

$$H^{k}(X;M) \cong \tilde{H}^{k}(X;M) \oplus H^{k}(\{*\};M)$$

In particular, points (and hence contractible spaces) have trivial reduced cohomology.

Proof. By the long exact sequence (C2)

$$\dots \longrightarrow \tilde{H}^{k}(X; M) \xrightarrow{\operatorname{id}^{\ast}} H^{k}(X; M) \xrightarrow{\operatorname{incl}^{\ast}} H^{k}(\{\ast\}; M) \xrightarrow{\partial} \tilde{H}^{k+1}(X; M) \longrightarrow \dots$$

Now, every space retracts to a point, i.e. $const_* \circ incl = id_{\{*\}}$. Hence $incl^* \circ const_*^* = id_{H^k}$ and we have a split exact sequence

$$0 \longrightarrow \tilde{H}^{k}(X; M) \xrightarrow{\operatorname{id}^{*}} H^{k}(X; M) \xleftarrow{\operatorname{incl}^{*}}_{\operatorname{const}^{*}_{*}} H^{k}(\{*\}; M) \longrightarrow 0$$

There is also a long exact sequence for reduced cohomology:

3 Theorem. Any pair (X, A) induces a long exact sequence of the form

$$\dots \longrightarrow H^k(X, A; M) \longrightarrow \tilde{H}^k(X; M) \longrightarrow \tilde{H}^k(A; M) \longrightarrow H^{k+1}(X, A; M) \longrightarrow \dots$$

(Observe that the base point * has to be chosen in A.)

Proof. By functoriality, naturality and the long exact sequence (C2) we have the following diagram with exact rows and columns:

The existence of the dotted maps in the first row follows from diagram chasing. \Box

 $\mathbf{2}$

Spheres. Long exact sequences are the main tool in computing the cohomology of spaces.

Example 4. The reduced cohomology groups of the spheres are given by

$$\tilde{H}^k(S^n; M) = \begin{cases} M & , n = k \\ 0 & , \text{otherwise} \end{cases}$$

Proof. (1) The assertion for $S^0 = \{\pm 1\}$ is immediate from the product and dimension axioms (C4) and (C5).

(2) On the other hand it follows from the long exact reduced cohomology sequence for the pair (D^{n+1}, S^n) that

$$\tilde{H}^k(S^n; M) \cong H^{k+1}(D^{n+1}, S^n; M)$$

(3) Now consider the "wrap-around map" $f : (D^{n+1}, S^n) \to (S^{n+1}, \{*\})$ which is a homeomorphism away from the boundary (it is the inverse of stereographic projection from *). We define subspaces

$$S^{n} \subseteq \underbrace{(D^{n+1} \setminus \frac{3}{4} D^{n+1})}_{=:Z} \subseteq \underbrace{\frac{1}{2} D^{n+1}}_{=:A} \subseteq D^{n+1},$$

* $\in f(Z) \subseteq f(A) \subseteq S^{n+1}$

and get a commutative diagram

The upper inclusions are homotopy equivalences, the lower inclusions satisfy the hypotheses of excision and the bottom restriction is a homeomorphism. Hence they induce isomorphism of the cohomology groups and it follows that f induces the first isomorphism in

$$\tilde{H}^{k+1}(S^{n+1};M) \cong H^{k+1}(D^{n+1},S^n;M) \cong \tilde{H}^k(S^n;M)$$

The claim now follows by induction.

Multiplicative Structure. A multiplicative structure on a cohomology theory $H^*(\cdot; M)$ with coefficients in an *R*-module *M* is given by a family of *R*-linear maps

$$\cup: H^k(X,A;M) \times H^l(X,B;M) \to H^{k+l}(X,A \cup B)$$

(called the *cup product*) together with a unit $1_X \in H^0(X; M)$ satisfying the following axioms:

- (M1) associativity
- (M2) graded commutativity:

$$x \cup y = (-1)^{kl} y \cup x \qquad (\forall x \in H^k(X, A; M), y \in H^l(X, B; M))$$

(M3) naturality

(M4) compatibility with the boundary map: if (X, A) is any pair, then

$$\partial(a) \cup x = \partial(a \cup \operatorname{incl}^*(x)) \qquad (\forall a \in H^k(A; M), x \in H^l(X; M))$$

We will usually omit the \cup symbol from products. The product turns the groups

$$H^*(X,A;M) := \bigoplus_{k=0}^{\infty} H^k(X,A;M) \quad \text{and} \quad H^{**}(X,A;M) := \prod_{k=0}^{\infty} H^k(X,A;M)$$

into unital graded commutative rings, called the cohomology rings.

5 Lemma. Elements of the form $1_X + x$ where the zeroth coefficient of x vanishes are invertible in $H^{**}(X, A; M)$.

6 Theorem. Singular cohomology admits a multiplicative structure if M = R is a commutative unital ring.

Projective Space. The following theorem describes the structure of the singular cohomology ring of projective space with \mathbb{Z}_2 -coefficients. Note that this is a commutative ring since -1 = 1 in \mathbb{Z}_2 .

7 Theorem. The cohomology groups of projective space with \mathbb{Z}_2 -coefficients are given by

$$H^{k}(P^{n};\mathbb{Z}_{2}) = \begin{cases} \mathbb{Z}_{2} & , k \leq n \\ 0 & , \text{otherwise} \end{cases}$$

and the higher cohomology groups are generated by the respective powers of the generator $0 \neq a \in H^1(P^n; \mathbb{Z}_2)$.

That is, $H^*(P^n; \mathbb{Z}_2)$ is the unital graded commutative ring generated by a single element *a* of degree 1 subject to the relation $a^{n+1} = 0$.

2. Stiefel-Whitney Classes

Axioms. The Stiefel-Whitney classes are cohomology classes $w_k(\xi) \in H^k(X; \mathbb{Z}_2)$ assigned to each vector bundle $\xi : E \to X$ such that the following axioms are satisfied:

- (S1) $w_0(\xi) = 1_X$
- (S2) $w_k(\xi) = 0$ if ξ is an *n*-dimensional vector bundle and k > n
- (S3) naturality: $w_k(\xi) = f^*(w_k(\eta))$ if there is a bundle map $\xi \to \eta$ with base map f
- (S4) Whitney product axiom: $w_k(\xi \oplus \eta) = \sum_{i+j=k} w_i(\xi) w_j(\eta)$
- (S5) non-triviality: $w_1(\gamma_1^1) \neq 0$ where γ_1^1 is the canonical line bundle over P^1

If we define the *total Stiefel-Whitney class* as $w(\xi) := (w_k(\xi)) \in H^{**}(X; \mathbb{Z}_2)$, then the fourth axiom can be equivalently stated as follows:

(S4') $w(\xi \oplus \eta) = w(\xi)w(\eta)$

Observe that every total Stiefel-Whitney class is invertible by axiom (S1) and Lemma 5. If $w(\xi) = 1$ then we say that the total Stiefel-Whitney class is *trivial*.

Finally we define the Stiefel-Whitney classes of a manifold M in terms of its tangent bundle:

$$w_i(M) := w_i(\tau_M)$$
 and $w(M) := w(\tau_M)$

Consequences. The following properties follow directly from the axioms.

8 Proposition. Two equivalent vector bundles have equal Stiefel-Whitney classes.

Proof. A bundle equivalence is a bundle map inducing the identity as its base map; hence the claim follows by naturality (S3).

9 Proposition. Trivial vector bundles have trivial total Stiefel-Whitney class.

Proof. Any trivial vector bundle over X is equivalent to a vector bundle of the form $X \times \mathbb{R}^n$. Thus the diagram

shows that there is a bundle map to a vector bundle over a point. But we know that all higher cohomology groups of a point are trivial. Hence the claim follows from naturality (S3). $\hfill\square$

Recall that a manifold is called *parallelizable* if its tangent bundle is trivial. Thus the Stiefel-Whitney classes of a manifold measure obstruction to parallelizability:

10 Corollary. Parallelizable manifolds have trivial Stiefel-Whitney class.

11 Corollary (Stability). The Stiefel-Whitney classes do not change upon addition of a trivial bundle.

Proof. Apply the Whitney product axiom (S4).

12 Corollary. Let ξ be an *n*-dimensional Euclidean bundle. If ξ possesses k nowhere linearly dependent sections, then the Stiefel-Whitney classes $w_i(\xi)$ vanish already if i > n - k.

Proof. The k nowhere linearly dependent sections span a trivial k-dimensional subbundle $\eta \subseteq \xi$. By means of the continuous inner product we can construct a (n-k)dimensional orthogonal complement η^{\perp} . We have $\eta \oplus \eta^{\perp} = \xi$, hence $w(\xi) = w(\eta^{\perp})$ by stability, and the claim follows from axiom (S2).

Tangent and Normal Bundle. Let $N \subseteq M$ be a smooth submanifold of a smooth Riemannian manifold. Then the tangent bundle of N is a subbundle of the tangent bundle of M restricted to N, i.e. $\tau_N \subseteq \tau_M | N$ and, as before, by means of the smooth inner product we can construct an orthogonal complement ν_N^M called the *normal bundle* of $N \subseteq M$, and $\tau_N \oplus \nu_N^M \cong \tau_M | N$.

13 Corollary (Whitney Duality Theorem). If $N \subseteq M$ is a smooth submanifold of a manifold in Euclidean space (i.e. $M \subseteq \mathbb{R}^n$ open with the identity chart), then

$$w(N) = w(\nu_N^M)^-$$

Example 14. The tangent bundle of a sphere has trivial total Stiefel-Whitney class.

MICHAEL WALTER

Proof. The normal bundle for the standard embedding $S^n \subseteq \mathbb{R}^{n+1}$ is trivial. \Box

In particular, the tangent bundle of a sphere cannot be distinguished from a trivial bundle over the sphere by means of their Stiefel-Whitney classes.

3. Bundles over Projective Space

Canonical Line Bundle. We will now calculate the Stiefel-Whitney classes of the canonical line bundles directly from the axioms:

15 Proposition. The total Stiefel-Whitney class of the canonical line bundle γ_n^1 over P^n is given by

$$w(\gamma_n^1) = 1 + a$$

where a denotes the generator of $H^*(P^n; \mathbb{Z}_2)$ (cf. Thm. 7).

Proof. We have an obvious bundle map

Therefore

$$0 \stackrel{(S5)}{\neq} w_1(\gamma_1^1) = \operatorname{incl}^*(w_1(\gamma_n^1))$$

and this shows that $w_1(\gamma_n^1) = a$, hence $w(\gamma_n^1) = 1 + a$ since the bundle is onedimensional.

Tangent Bundle. By definition the canonical line bundle over P^n is a subbundle of the trivial (n + 1)-dimensional bundle. We can thus consider its orthogonal complement γ_n^{\perp} which is given by

$$E(\gamma_n^{\perp}) := \{([x], v) \in P^n \times \mathbb{R}^{n+1} : x \perp v\} \xrightarrow{\operatorname{proj}_1} P^n$$

16 Proposition. The total Stiefel-Whitney class of the orthogonal complement bundle is given by

$$w(\gamma_n^{\perp}) = 1 + a + a^2 + \ldots + a^n$$

Proof. Since the Whitney sum $\gamma_n^1 \oplus \gamma_n^{\perp} = \epsilon^{n+1}$ is trivial (by construction) we have

$$w(\gamma_n^{\perp}) = w(\gamma_n^1)^{-1} = (1+a)^{-1} = 1+a+a^2+\ldots+a^n$$

In particular, this shows that all of the first n Stiefel-Whitney classes of an n-dimensional vector bundle may be non-zero.

17 Proposition. The tangent bundle τ_{P^n} of P^n is equivalent to the homomorphism bundle $\operatorname{Hom}(\gamma_n^1, \gamma_n^{\perp})$.

Proof. Recall that the tangent bundle of projective space can be defined as follows:

$$TP^n := (TS^n := \{(x, v) \in S^n \times \mathbb{R}^{n+1} : x \perp v\}) / \{\pm 1\} \longrightarrow S^n / \{\pm 1\} =: P^n$$

Note that every point of S^n naturally represents a point in the canonical line bundle γ_n^1 and every point of the tangent plane of S^n naturally represents a point in the orthogonal complement bundle γ_n^{\perp} . This suggest defining a map

$$\Gamma P^n \to \operatorname{Hom}(\gamma_n^1, \gamma_n^\perp), \ [(x, v)] \mapsto (x \mapsto v)$$

and it is straightforward to verify that all equivalence relations fit together in such a way that this map is a well-defined bundle equivalence. $\hfill\square$

18 Theorem. The following bundles are equivalent:

1 -

$$\tau_{P^n} \oplus \epsilon^1 \cong \bigoplus_{k=1}^{n+1} \gamma_n^1$$

In particular, the total Stiefel-Whitney class of projective space is given by

$$w(P^n) = (1+a)^{n+1}$$

Proof. The endomorphism bundle $\text{Hom}(\gamma_n^1, \gamma_n^1)$ is trivial (consider the non-vanishing identity section). Thus

$$\tau_{P^n} \oplus \epsilon^1 \stackrel{1}{\cong} \operatorname{Hom}(\gamma_n^1, \gamma_n^{\perp}) \oplus \operatorname{Hom}(\gamma_n^1, \gamma_n^1) \cong \operatorname{Hom}(\gamma_n^1, \gamma_n^{\perp} \oplus \gamma_n^1)$$
$$\cong \operatorname{Hom}(\gamma_n^1, \epsilon^{n+1}) \cong \bigoplus_{k=1}^{n+1} \operatorname{Hom}(\gamma_n^1, \epsilon^1) \cong \bigoplus_{k=1}^{n+1} \gamma_n^1$$

where the last equivalence is induced by the continuous inner product of the Euclidean bundle γ_n^1 .

19 Corollary (Stiefel). The total Stiefel-Whitney class of the projective space P^n is trivial if and only if (n + 1) is a power of 2.

Proof. Write $n + 1 = 2^k m$ with odd m. By the Frobenius homomorphism we have

$$w(P^n) = (1+a)^{n+1} = (1+a^{2^k})^m = 1+a^{2^k} + \binom{m}{2}a^{2\cdot 2^k} + .$$

It follows that $w(P^n)$ is trivial if and only if $2^k = n + 1$.

Applications. A (not necessarily associative) algebra is called a *division algebra* if every equation of the form ax = b and xa = b with nonzero a and arbitrary b has a unique solution.

20 Lemma. A finite-dimensional algebra is a division algebra if and only if it has no zero divisors.

Proof. Left and right multiplication are linear endomorphisms of a finite-dimensional vector space, hence injective if and only if surjective. \Box

21 Theorem (Stiefel). Suppose there exists a real division algebra of dimension n. Then the projective space P^{n-1} is parallelizable and n is a power of 2.

Proof. Up to isomorphism, any real division algebra of dimension n is of the form $(\mathbb{R}^n, +)$ with a bilinear product $p : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ without zero divisors. Let us

denote the standard basis of \mathbb{R}^n by (e_i) . Since p has no zero divisors, it induces automorphisms $p(\cdot, e_i)$ and

$$v_i := p(\cdot, e_i)p(\cdot, e_1)^{-1}$$

Note that $v_1 = id$ and $(v_i(x))$ are linearly independent for $x \neq 0$:

$$\sum \lambda_i v_i(x) = 0 \ \Rightarrow \ p(x, \sum \lambda_i e_i) = 0 \ \Rightarrow \ \lambda_i \equiv 0 \text{ or } x = 0$$

We can thus define sections of the bundle $\operatorname{Hom}(\gamma_{n-1}^1, \gamma_{n-1}^\perp) \cong \tau_{P^{n-1}}$ as follows:

$$s_i([x])(y) :=$$
 orthogonal projection of $v_i(y)$ along $\langle x \rangle$

Since $s_1 \equiv 0$ it follows that s_2, \ldots, s_n are n-1 nowhere linearly dependent sections. We have thus proved that P^{n-1} is parallelizable, and now Cor. 19 shows that n must be a power of 2.

In fact, one can show that the projective space P^{n-1} is parallelizable only for n = 1, 2, 4 or 8. It follows that finite-dimensional real division algebras exist precisely in these dimensions!

References

- [Hat02] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.
- [Lü05] Wolfgang Lück. Algebraische Topologie: Homologie und Mannigfaltigkeiten. Vieweg+Teubner, 2005.
 [May99] J. Peter May. A Concise Course in Algebraic Topology. University of Chicago Press,
- [May99] J. Peter May. A Concise Course in Algebraic Topology. University of Chicago Press, 1999.
- [MS74] John Milnor and James D. Stasheff. Characteristic Classes. Princeton University Press, 1974.