
REPRESENTATION THEORY OF THE SYMMETRIC GROUP
(FOLLOWING [Ful97])

MICHAEL WALTER

1. Diagrams and Tableaux

Diagrams and Tableaux. — A (Young) diagram λ is a partition of a natural
number n ¤ 0, which we often represent as a weakly descending tuple pλ1, . . . , λnq
of positive integers summing to n, or, equivalently, as a diagram of n boxes with λi
boxes in the i-th row. The length |λ| of a diagram λ is defined to be the number
n partition by λ, i.e., the total number of boxes. We also write λ $ n. We denote
the number of rows by lpλq.

A filling of a Young diagram is an assignment of numbers to each box, it is called
a numbering if all entries have to be distinct.

A (semistandard) (Young) tableau is a filling which is (i) weakly increasing across
each row and (ii) strictly increasing down each column. We denote by Tabpλ,mq
the set of of tableaux of shape λ which are filled with rms. Clearly, this set is
nonempty if and only if lpλq ¤ m. Let us also denote by Tabpmq �

�
λ Tabpλ,mq

the set of tableaux of arbitrary shape which are filled by rms. The content cpT q
of a tableau T P Tabpλ,mq is the m-tuple pc1, . . . , cmq where ck is the number of
times k occurs in T .

A standard (Young) tableau is both a tableau with n boxes as well as a numbering
by rns � t1, . . . , nu. In particular, it is strictly increasing in both directions. We
denote by Tabstdpλq the set of standard tableaux of shape λ.

Conjugate and Transpose. — The conjugate λ is defined by flipping a diagram
λ over its main diagonal. Any filling F of λ determines a filling of the conjugate,
called the transpose and denoted by FT . The transpose of a standard tableau is
again a standard tableau (but the analogue statement for general tableaux is false).

Order Relations. — There are two important order relations on the set of Young
diagrams: (i) Lexicographic order ¤, where we consider diagrams as tuples of pos-
itive numbers, and (ii) domination order �, which is defined as follows: λ is domi-
nated by λ1 if

λ1 � . . .� λk ¤ λ11 � . . .� λ1k p@kq.

Lexicographic order is total, while domination order is not. Clearly, λ� λ1 implies
λ ¤ λ1, while the converse does not hold in general.
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Row Insertion. — Given a tableau T and a positive integer x, we construct a
new tableau T Ð x by the following procedure (row insertion, or row bumping):
If x is at least as large as all entries in the first row, place x in a new box at the
end of that row; otherwise replace the first entry larger than x by x and repeat the
above process on the second row.

Lemma. Row insertion is a well-defined operation on the set of tableaux, con-
structing a tableau T 1 with |T | � 1 boxes from a tableau with T boxes.

Moreover, it is invertible in the following sense: If we are given the resulting tableau
T 1 together with the location of the box B that has been added, then by running
the algorithm backwards1 we recover the original tableau T and the element x that
has been added. Similarly, if we apply inverse row insertion on some box B in a
tableau T 1 and row-insert x back into the resulting tableau then we recover the
tableau T 1 we started with.

Let us denote by T 1 Ñ B the tuple pT, xq which we get by running inverse row
insertion on box B in a tableau T 1. Then the statement of the preceding Lemma
can be summarized by the following formulas:

pT Ð xq Ñ B � pT, xq

Ð pT 1 Ñ Bq � T 1

We also record the following lemma, which is basic for the analysis of row insertions.

Lemma (Row Bumping Lemma, [Ful97, §1.1]). Let T be a tableau and x, x1
positive integers. Denote by B and B1 the new boxes in pT Ð xq Ð x1 arising from
first inserting x and then x12. Then:

(i) If x ¤ x1, then B is strictly left of and weakly below of B1.

(ii) If x ¡ x1, then B is weakly left of and strictly below of B1.

Product of Tableaux. — We can thus define the product T � U of two tableaux
by row inserting each entry of U into X, from left to right and bottom to top.
Clearly, the empty tableau is a unit with respect to the product. We will see later
that this operation is associative, turning Tabpmq into a monoid.

As an example of how to handle the combinatorics of this product, we prove a
combinatorial version of Pieri’s famous formulas:

Example (Pieri’s Formulas — Combinatorial Version). Let T be a tableau of arbi-
trary shape λ, and U a tableau of shape pnq (resp. p1nq), that is, given by weakly
ascending numbers x1 ¤ . . . ¤ xn (resp. strictly ascending numbers xn   . . .   x1).
Then the shape of the product tableau

T � U � ppT Ð x1q Ð . . .q Ð xn

1Let y be the element in box B (note that B is always the right-most box of a certain row) and
remove B from the diagram. Then find right-most entry x in the row above which is strictly
smaller than y, replace it by y, and repeat the procedure with x. Stop after having replaced an
element x in the first row. Then we have recovered the original tableau T , and x is the element
that has been row-inserted.
2These are of course not necessarily the boxes which x and x1 have been placed into.
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is obtained by adding n boxes to λ, with no two boxes in the same column (resp.
row).

Conversely, given the tableau T , any tableau T 1 of the latter shape can be uniquely
factorized in the form T 1 � T � U where U is a tableau of shape pnq (resp. p1nq).

Proof (Column version). The first assertion is immediate from the Row Bumping
Lemma.

For the converse, denote by B1, . . . , Bn the boxes in T 1 which are not present in T ,
order from left to right. Perform inverse row insertion on T 1 in the reverse order
Bn, . . . , B1. Then we get positive integers xn, . . . , x1 such that

T 1 � ppT Ð x1q Ð . . .q Ð xn.

Since this of course adjoins the boxes Bi in the order B1, . . . , Bn, i.e., strictly from
left to right, we can conclude from the Row Bumping Lemma that x1 ¤ . . . ¤ xn.

For uniqueness, observe that if x1 ¤ . . . ¤ xn is any ascending sequence of positive
integers such that

T 1 � ppT Ð x1q Ð . . .q Ð xn

then by the Row Bumping Lemma these row insertions always adjoin the boxes B1,
. . . , Bn in that order. Consequently, the xi are uniquely defined because they can
be recovered by inverse row insertion in the order Bn, . . . , B1. �

2. Words

Word monoid. — In this section we will give an algebraic description of the set
of tableaux filled with rms as a quotient of the free monoid F pmq of words in the
alphabet rms, the product is by juxtaposition.

To do so, let us first assign a word to every tableau T , its (row) word wpT q, by
writing the entries of T from left to right and bottom to top.3 This defines a map

w : Tabpmq ãÑ F pmq.

Conversely, if w is a word which comes from a tableau T then, by breaking the word
whenever one number is strictly greater than the next, we recover the tableau T .
For example,

wrowp
1 2 4 5
6 8 9

q � 6891245.

Knuth Equivalence. —We will now study the effect of row insertion on a tableau.
The algorithm for constructing T Ð x can be formalized as follows: Inserting x
into a row r amounts to (i) decomposing r � ux1v into words u, v and a letter x
such that all letters of u are less or equal to x and x1 ¡ x, (ii) replacing x1 by x,
and (iii) bumping x1 into the next row (i.e., in front of the row uxv). That is,

ux1vx; x1uxv if u ¤ x   x1 ¤ v.

3One similarly defines the column word by writing the entries column by column, from bottom to
top and left to right.
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Let us decompose this transformation into more elementary ones:

ux1vx � u1 . . . ukx
1v1 . . . vlx

; u1 . . . ukx
1xv1 . . . vl

; xu1 . . . ukxv1 . . . vl � x1uxv,

where we have (i) first moved x in front of all but the first entry larger than x
and (ii) we have moved x1 (which is characterized by sitting between two smaller
elements) to the very left.

That is, by starting out with the string wpT qx and applying either of the following
transformations, dubbed elementary Knuth transformation,

abx ÞÑ axb if x   a ¤ b

axb ÞÑ xab if a ¤ b   x.

we arrive at the word representing the tableau T Ð x. If we define Knuth equiva-
lence as the equivalence relation � generated by these steps then the above discus-
sion shows the following:

Lemma. The induced map w : Tabpmq Ñ F pmq{ � preserves products, i.e.,

wpT qwpUq � wpT � Uq.

One can show that this equivalence relation not only makes the induced map pre-
serve products, but also that the induced map becomes bijective.

Theorem ([Ful97, p. 22]). Every word is Knuth equivalent to a single tableau.
Consequently, the map from above, assigning to a tableau its row word, induces an
isomorphism Tabpmq � F pmq{ �.

In particular, the set of tableau Tabpmq filled with rms with the product operation
defined above forms an associative monoid, called the tableau monoid (or plactic
monoid).

Observe that it is a consequence of the above that the tableau associated to a word
w � x1 � � �xn is given by

x1 � � � � � xn � ppp x1 Ð x2q Ð . . .q Ð xnq.

Robinson-Schensted Correspondence. — Although every word in a Knuth
equivalence class determines the same tableau, we have seen that the row insertion
algorithm is invertible (that is, we should recover the word we started from) if
only we store the the order in which the boxes have been added when constructing
the tableau from the word. We can formalize this idea as follows: Given a word
w � x1 � � �xn � wpT q, define the associated recording tableau by putting k in
the box which has been adjoined in the k-th step, that is, when row-inserting xk.
Observe that recording tableaux are standard tableaux. Thus:

Lemma (Robinson-Schensted Correspondence). The map sending a word w
to the pair pT,Rq consisting of its associated tableau and the recording tableau
defines a bijection

rmsn Ñ
º

λ$n

Tabpλ,mq � Tabstdpλq, w ÞÑ pT,Rq
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between words of length n in the alphabet rms and pairs pP,Rq of tableaux of equal
shape λ $ n, where P is a tableau with entries in rms and where R is a standard
tableau.

We record the special case of words with n � m and no repetitions (that is, of
permutations in rns) for later reuse:

Corollary (Robinson Correspondence). The above map restricts to a bijection
Sn �

²
λ$n Tabstdpλq

2.

Tableau Ring. — Given any monoid M , we can define its associated monoid
ring ZrM s as the free Z-module with basis M and product defined such that the
inclusion M ãÑ ZrM s is a homomorphism of monoids.

The tableau ring ZrTabpmqs then is the monoid ring associated to the tableau
monoid Tabpmq. It is an associative ring with unit represented by the empty
tableaux, and non-commutative if m ¡ 2.

For every shape λ we define Sλ P ZrTabpmqs as the formal sum of all tableaux of
shape λ. Observe that this element is nonzero if and only if lpλq ¤ m (otherwise
there are no such tableaux!).

Combinatorial assertions about tableaux can often be stated more succinctly using
the tableau ring:

Example (Pieri’s Formulas — Algebraic Version). We have the following relations
in every ZrTabpmqs:

Sλ � Spnq �
¸

µ

Sµ

Sλ � Sp1nq �
¸

µ1

Sµ1

where the sum is over all µ (resp. µ1) that are obtained from λ by adding n boxes,
with no two boxes in the same column (resp. row).

3. Schur Polynomials

Schur Polynomials. — We can assign to every tableau in T P Tabpλ,mq a mono-
mial of degree |λ|,

XT :� XcpT q :�
m¹

k�1

Xnumber of times k occurs in T
k P ZrX1, . . . , Xms,

and by the universal property this defined a Z-linear map

p�qT : ZrTabpmqs Ñ ZrX1, . . . , Xms,

which in fact is a ring homomorphism, as cpT � Uq � cpT q � cpUq.

The image of the element Sλ under this map is called the Schur polynomial sλ �
sλpX1, . . . , Xmq.
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For example, the Schur polynomial for λ � pnq is just the n-th completely sym-
metric polynomial hnpX1, . . . , Xmq, i.e., the sum of all monomials of degree n in m
variables.

Dually, the Schur polynomial for λ � p1nq is the n-th elementary symmetric polyno-
mial enpX1, . . . , Xmq, i.e., the sum of all monomials of the form Xi1 � � �Xin where
the pikq are strictly increasing numbers in rms.

Polynomial Identities. —As p�qT is a ring homomorphism, every relation in the
monoid of tableaux implies an identity between the corresponding polynomials. For
example, the algebraic version of Pieri’s formulas immediately implies the following:

Example (Pieri’s Formulas — Polynomial Version). We have the following identi-
ties in the polynomial ring ZrX1, . . . , Xms:

sλpX1, . . . , XmqhnpX1, . . . , Xmq �
¸

µ

sµpX1, . . . , Xmq

sλpX1, . . . , XmqenpX1, . . . , Xmq �
¸

µ1

sµ1pX1, . . . , Xmq

where the sum is over all µ (resp. µ1) that are obtained from λ by adding n boxes,
with no two boxes in the same column (resp. row).

Kostka Numbers. — Let λ be a diagram and c � pc1, . . . , cmq a tuple of non-
negative integers. We define the Kostka number Kλ,c as the number of tableaux of
shape λ and content c.

Equivalently, Kλ,c is the number of sequences of tableaux

H � λp0q � λp1q � . . . � λpmq � λ

such that in each step λpi�1q ; λpiq one adds precisely ci boxes, with no two in the
same column.4 In other words, we have the identity

Kλ,c �
¸

λp1q

. . .
¸

λpmq�λ

1

where the λpiq are constrained as above.

Lemma. For all diagrams λ and weight tuples c � pc1, . . . , cmq we have

Spc1q � � �Spcmq �
¸

λ

Kλ,c Sλ P ZrTabpmqs,

where λ runs over all tableaux (filled with rms).

Proof. In view of the identity displayed above, the assertion follows from Pieri’s
first formula by induction over m. �

4The bijection assigns to a tableaux T of shape λ and content c the filtration defined by letting
λpiq be the sub-tableau of λ with entries no larger than i.
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Symmetric Polynomials. — In particular, the preceding Lemma implies identi-
ties between the Schur polynomials and certain symmetric polynomials:

hc1pX1, . . . , Xmq � � �hcmpX1, . . . , Xmq �
¸

λ

Kλ,c sλpX1, . . . , Xmq.

We can use these to show that the Schur polynomials are in fact symmetric:

Lemma. The Schur polynomials sλpX1, . . . , Xmq are symmetric polynomials in
ZrX1, . . . , Xms.

Proof. By varying the content vector c, we get a system of linear equations in the
polynomial ring ZrX1, . . . , Xms. We would like to argue that the matrix pKλ,cq is
invertible over Z when choosing the content vectors carefully.

In fact, we will only consider content vectors µ which are diagrams with the same
number of boxes as λ. Let us order these partitions lexicographically. We claim
that pKλ,µq is a square matrix such that (i) all non-zero entries satisfy µ ¤ λ and
(ii) all diagonal elements are equal to one. The assertion then follows from Gauss’
algorithm over Z. But these claims are true simply because the entries of a tableau
have to increase strictly down each column. �

4. Representation Theory of Sn

Row Group and Column Group. — In this section we consider numberings by
rns of Young diagrams of shape λ with n boxes.5 Let us denote the set of all such
diagrams by Numpλq. We let the symmetric group Sn act by replacing the entry
of each box in a numbering by its permutation. For example,

p123q � 1 2 4
3 5

� 2 3 4
1 5

.

The row group RpT q of such a numbering then is the subgroup of permutations
which permute the entries of each row among themselves. Clearly, RpT q is iso-
morphic to a group of the form Sλ1

� � � � � Sλlpλq (a Young subgroup), where λ is
the shape of T . Likewise, the column group CpT q is defined as the subgroup of
permutations preserving the columns of the numbering T .

Tabloids. — A tabloid of shape λ $ n is an equivalence class of numberings of λ
by rns, two such numberings being equivalent if the corresponding rows contain the
same entries.6 We write tT u for the tabloid corresponding to a numbering T . For
example,

t 1 2
3

u � t 2 1
3

u.

As permuting boxes and permuting entries commutes with each other, the action
of the symmetric group on numberings descends to an action on the set of tabloids
via g � tT u � tg � T u.

5That is, standard tableaux, but without the ordering condition.
6In other words, tabloids are cosets with respect to another canonical action of Sn on Numpλq by
permuting boxes, restricted to the Young subgroup corresponding to the diagram λ.
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Consequently, the complex vector space Mλ with basis the tabloids of shape λ is a
linear representation of Sn.

Young Symmetrizers and Specht Modules. — With a numbering T we can
associate certain elements in the group algebra of the symmetric group,

rpT q :�
¸

πPRpT q

π, cpT q :�
¸

πPCpT q

signpπqπ, , ypT q :� cpT qrpT q,

called Young symmetrizers. It is easy to check that, up to a non-zero scalar, rpT q
and cpT q are idempotent.

We will associate to every numbering T its “column-wise anti-symmetrization”

vpT q :� cpT q � tT u �
¸

πPCpT q

signpπqtπ � T u PMλ.

Lemma. For all numberings T P Numpλq and all permutations π P Sn, we have

π � vpT q � vpπ � T q

Proof. This is immediate from the fact that Cpπ � T q � πCpT qπ�1. �

Consequently, the linear span Sλ of all such vectors vpT q is a representation of the
symmetric group Sn, called the Specht module. Observe that Sλ � CrSns � vpT q for
any numbering T (an obvious consequence of the Lemma).

The following Lemma is the main combinatorial ingredient of the representation
theory of the symmetric group:

Lemma. Let λ, λ1 $ n such that λ does not strictly dominate λ1. Then for any
two numberings T P Numpλq, T 1 P Numpλ1q, exactly one of the following occurs:

(i) There exists a pair of distinct integers that occur in the same column of T and
in the same row of T 1, and cpT q � tT 1u � 0.

(ii) The shapes λ and λ1 are the same, there exist π P CpT q, π1 P RpT 1q such that
π � T � π1 � T 1, and cpT q � tT 1u � �vpT q.

Proof. Let us first suppose that there exists such a pair of integers. Denote by τ
the transposition permuting them, and consider

cpT q � tT 1u � pcpT qτq � pτ � tT 1uq.

On the one hand, τ � tT 1u � tT 1u, because the pair of integers occurs in the same
row of T 1. On the other hand, CpT qτ � CpT q, since it occurs in the same column
of T , and thus cpT qτ � �cpT q. Consequently, cpT q � tT 1u vanishes.

Conversely, suppose that there exist no two such integers. Then the entries in the
first (in fact, any) row of T 1 occur in different columns of T , and we can find a
permutation in CpT q moving them to the first row. Iterating this procedure with
the other rows of T 1, we find a permutation π P CpT q such that every row of π � T
contains (at least) the entries of the corresponding row of T 1. Applying π does
not change the shape of T , so that we have λ � λ1. But, by assumption, λ does
not strictly dominate λ1, so both are in fact equal. Thus π � T and T 1 have the
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same shape and contain the same entries in each row. This means that we can find
π1 P RpT q such that π � T � π1 � T 1. In particular,

cpT q � tT 1u � cpT q � tπ1T 1u � cpT q � tπT u � cpT q � π � tT u � signpπqvpT q. �

Proposition. For each diagram λ $ n, the Specht module Sλ is an irreducible
complex representation of the symmetric group Sn, and all these representations
are non-isomorphic.

Conversely, every irreducible complex representation of Sn is of that form.

Proof. Pairwise non-isomorphic: Let T P Numpλq. Then:

vpT q � cpT q � tT u 9 cpT q2 � tT u � cpT q � vpT q � cpT q � Sλ � cpT q �Mλ � CvpT q,

where the last identity is by the preceding Lemma, hence cpT q � Sλ � CvpT q.

On the other hand, if λ � λ1, say λ   λ1, then, as λ does not strictly dominate λ1,
this Lemma also shows that

cpT q � Sλ
1

� cpT q �Mλ1

� 0.

That is, we can distinguish the representations Sλ, Sλ
1

using elements of the group
algebra. They are thus non-isomorphic.

Irreducibility: Now we show that Sλ is irreducible, or, equivalently, decomposable
(we work over characteristic zero). Indeed, suppose that Sλ decomposes into two
subrepresentations, say Sλ � V `W . Then

CvpT q � cpT q � Sλ � pcpT q � V q ` pcpT q �W q,

thus precisely one of the right-hand side summands is non-zero. Consequently, one
of the subrepresentations contains vpT q, say V , and

Sλ � CrSns � vpT q � V � Sλ.

Hence Sλ � V , and it follows that Sλ is indecomposable.

Completeness: By elementary representation theory, the number of isomorphism
classes of representations is equal to the number of conjugacy classes, which in turn
is equal to the number of partitions of n. The last assertion follows thus. �

We remark that the representations Mλ and Sλ could have been defined first over
the rational numbers and then tensored with C, so their characters are Q-valued.
This in particular implies that the irreducible representations Sλ are self-dual .

While the vpT q span the irreducible representation Sλ, the following Lemma shows
that restricting T to standard tableaux we get a basis of Sλ:

Lemma. The vectors pvpT qq, where T varies over the standard tableaux of shape
λ, form a basis of Sλ.

Proof. Linear independence: Let us totally order the numberings in Numpλq by
setting T ¡ T 1 if the largest numbers which is placed in two different boxes occurs
earlier in the column word of T than in the column word of T 1.
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Observe that, if T is a standard tableau, then π � T ¡ T for all 1 � π P RpT q (since
in each row of T , the entries are ordered strictly ascending from left to right). It
follows that every tabloid is represented by at most one standard tableau, which is
then the minimal element of the equivalence class.

Similarly, we have π � T   T for all 1 � π P CpT q. Consequently, among the
standard tableau whose associated tabloid has non-zero coefficient in

vpT q �
¸

πPCpT q

signpπqtπ � T u

there exists a unique maximal one, namely tT u.7 Thus a non-trivial linear combi-
nation

°
TPTabstdpλq

cT vpT q can never be zero, since if T is maximal with cT � 0

then the coefficient of tT u is non-zero.

Completeness: A basic result in the representation theory of finite groups says that
the square of the dimensions of all irreps sums to the group order. Consequently,

n! �
¸

λ$n

pdimSλq2 ¥
¸

λ$n

p#Tabstdpλqq
2 � n!,

where the last identity is due to the Robinson Correspondence. We conclude that
dimSλ � #Tabstdpλq for all shapes λ in parallel. �

Examples. —We will now look at some examples of Specht modules (in particular,
we will see all irreducible representations of S3):

Example (λ � p1nq). The representation Sλ is the trivial representation of Sn (the
column groups are all trivial).

Example (λ � pnq). The representation Sλ is the signum representation of Sn. In-
deed, the representation is one-dimensional, spanned by the vector vT corresponding
to the single standard tableau, and as CpT q � Sn, we have

π � vT � signpπq vT p@πq.

Example (λ � ). The standard tableaux of shape λ are 1 2
3

and 1 3
2

, thus Sλ

is two-dimensional with basis

X :� vp 1 2
3

q � t 1 2
3

u � t 2 3
1

u,

Y :� vp 1 3
2

q � t 1 3
2

u � t 2 3
1

u,

and the action of S3 is given by

p1 2q �X � t 1 2
3

u � t 1 3
2

u � X � Y,

p1 2q � Y � t 2 3
1

u � t 1 3
2

u � �Y,

p2 3q � Y � t 1 2
3

u � t 2 3
1

u � X.

It is in fact straightforward to show that Sλ is isomorphic to the representation on

tpx, y, zq : x� y � z � 0u

7In fact, tT u should be the only one, since if π
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by permuting coordinates.8

A Glimpse at Schur-Weyl Duality. Every diagram λ induces a functor, the
Schur functor Sλ sending a complex vector space V to the GLpV q-representation

SλpV q :� V bn bCrSns S
λ.

Proposition. We have
V bn �

¸

λ$n

SλpV q b Sλ

as GLn–Sn–bimodules.

Proof. By the Peter-Weyl analogue for finite groups and self-duality of the Specht
modules, we have CrSns �

°
λ$n S

λ b Sλ as Sn–bimodules. Thus:

V bn � V bn bCrSns CrSns �
¸

λ$n

V bn bCrSns S
λ b Sλ �

¸

λ$n

SλpV q b Sλ. �

In fact, the representations SλpV q for diagrams λ with at most dimV rows are all
of the irreducible polynomial representations of GLpV q (and zero otherwise). See
[Ful97, §8] for more details.
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