Derivation of the Navier-Stokes equation®

Michael Walter

1 Coordinates

We consider a region €2y C R? which will change in shape over time (since this is what fluids tend to do). Let
d:Qyx[0,T] - R?

be the function which assigns to each point zg at time 0 its position z = ®(zg,t) at time ¢. The following
picture illustrates the situation at hand:

Qo
o

Note that we can as well think of €y as the set of particles. It is thus natural to introduce Lagrangian
coordinates (xo,t) which consist of a particle and a point in time. This is a common choice in solid-state

physics.
In fluid mechanics however one typically uses Eulerian coordinates (x,t) consisting of a position x € €, at a
particular time ¢, thus focusing on individual points in space. Typical quantities expressed in this way are (by

a slight misuse of notation):
(i) velocity u : € x [0,T] — R?
(i) pressure p: Q; x [0,T] = R
(ifi) density o: Q; x [0,T] — R

In the following we will only discuss the case 2y = Q = const.

2 Convective derivative and transport theorem
Fix any particle z¢ € Qq. Its trajectory is given by the function
@ [0,T] — R* t s (20, 1)
Now, given any C! function h : Q x [0,7] — R, we can study its time evolution along the trajectory of z¢:
h(t) := h(p(t),t)
By the definition of the velocity field « and using Eulerian coordinates, we find that

ey = ( 0 h) (o().1) + /(1) - (Vh) (8), 1)

dt ot
0
= ah (x,t) +u(z,t) - (Vh) (z,t)
This derivative, which is given by the differential operator
D 0]

is called the convective derivative of h. It thus describes the quantity’s rate of change along a certain trajectory.

* After a seminar talk by HDoz. Dr. Peer Kunstmann



1 Example. By taking h = u; to be the j-th component of the velocity field, we find that the acceleration
along a trajectory is given by

Du 0

=:u-Vu

The following theorem characterizes the rate of change of volume integrals of a given quantity (which in
a sense is a generalization of the convective derivative to “trajectories” of entire volumes instead of a single
particle).

2 Theorem (Transport theorem). Let Vi C Qg be a region and Vi := ®(Vy,t) C Q. Then we have:

4 h(z,t) - dx = /V <?}i§l +div (hu)) (z,t) - dx

dt Jy,

3 Conservation of mass

The mass of a volume Vj is conserved with respect to time:

/ o(x,t) - dx = const
Vi

Thus, by the transport theorem we get

0= /V (gf +div(gu)) (1) - dz

for any volume V;. Thus

do | ..
0= n + div (ou)

A fluid is called homogeneous if density does not vary over space. It is called incompressible if density does
not vary over time.

Thus for incompressible, homogeneous fluids we have o(z,t) =: gg = const, and from the conservation of
mass it follows that u is divergence free (or solenoidal):

div(u) =0

4 Momentum and forces

The momentum v of a volume Vj is given by
v(t) :z/ o(z, t)yu(z,t) - dz
Vi

By Newton, the change of momentum is given by the sum of forces acting on the volume, and together with
the transport theorem we have

“sum of forces”

:%v(t) = /W a(agtu) + (div (ouju)); - dx (1)

In the given physical situation, there are the following kinds of forces:

(i) Volume forces, which are given by a volume integral
| etetgtan)- do
Vi

(e.g. gravity or other “external” forces, including sources and sinks)



(ii) Surface forces, which are given by a surface integral
/ oj(z,t) -n(z,t)-dS
oV

a1 . . . .
where 0 = ( gz) is the (symmetric) stress tensor (e.g. pressure, viscous forces or other “internal” forces)
3

We can express the surface forces by a volume integral (using Gauss’ divergence theorem), and after plugging
the sum of forces into equation (1) (which holds for any volume Vj), we see that already the integrands must
agree; that is:

% + (div (ou;u)); = og + div (o)

where div (o) is defined row-wise.
From the identity

div (uju) = Z Ok (ujug) = Z (Okuj) ug + u, Z Opug
k

k k
= ((u- V)u)j + u; div (u)

we see that for an incompressible, homogeneous fluid (which is divergence free) this reduces to:

ou 1 .
o HuVu=—divi) =g (1)

This is the equation of motion of the velocity field.

Now from physics we know that the stress tensor can be decomposed into a pressure part and a viscosity
part:

o= —pl +7(Vu)

pressure  viscosity

(7:Q2x[0,T] — R is a scalar function.)
For inviscid fluids we have 7 = 0, and the equation of motion (1) becomes

ou 1
E-ﬁ-(wV)u—i-ng—g

This is called the Euler equation for incompressible, homogeneous, inviscid fluids.

For Newtonian fluids we only know that 7Vu is linear in Vu, rotationally invariant and symmetric. This
leads to the approximation

1
TVu = Adiv (u) I + p= (Vu + (Vu)T>
—— 2
=0

(p is called dynamic viscosity of the fluid). A quick calculation shows that div((Vu)?) = 0, and we arrive at
the Navier-Stokes equation for incompressible and homogeneous fluids:

1
%—i—(u-v)u—i—ng—uAu:g

(v is called kinematic viscosity of the fluid)
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