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1 Coordinates
We consider a region Ω0 ⊆ R3 which will change in shape over time (since this is what fluids tend to do). Let

Φ : Ω0 × [0, T ]→ R3

be the function which assigns to each point x0 at time 0 its position x = Φ(x0, t) at time t. The following
picture illustrates the situation at hand:

Ω0

Ωt

b
b

x0 x = Φ(x0, t)

Note that we can as well think of Ω0 as the set of particles. It is thus natural to introduce Lagrangian
coordinates (x0, t) which consist of a particle and a point in time. This is a common choice in solid-state
physics.

In fluid mechanics however one typically uses Eulerian coordinates (x, t) consisting of a position x ∈ Ωt at a
particular time t, thus focusing on individual points in space. Typical quantities expressed in this way are (by
a slight misuse of notation):

(i) velocity u : Ωt × [0, T ]→ R3

(ii) pressure p : Ωt × [0, T ]→ R

(iii) density % : Ωt × [0, T ]→ R

In the following we will only discuss the case Ωt = Ω = const.

2 Convective derivative and transport theorem
Fix any particle x0 ∈ Ω0. Its trajectory is given by the function

ϕ : [0, T ]→ R3, t 7→ Φ(x0, t)

Now, given any C1 function h : Ω× [0, T ]→ R, we can study its time evolution along the trajectory of x0:

h̃(t) := h(ϕ(t), t)

By the definition of the velocity field u and using Eulerian coordinates, we find that

d

dt
h̃(t) =

(
∂

∂t
h

)
(ϕ(t), t) + ϕ′(t) · (∇h) (ϕ(t), t)

=

(
∂

∂t
h

)
(x, t) + u (x, t) · (∇h) (x, t)

This derivative, which is given by the differential operator

D

Dt
:=

∂

∂t
+ u · ∇

is called the convective derivative of h. It thus describes the quantity’s rate of change along a certain trajectory.
∗After a seminar talk by HDoz. Dr. Peer Kunstmann
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1 Example. By taking h = uj to be the j-th component of the velocity field, we find that the acceleration
along a trajectory is given by

Du

Dt
=

∂

∂t
u+ (u · ∇uj)j︸ ︷︷ ︸

=:u·∇u

The following theorem characterizes the rate of change of volume integrals of a given quantity (which in
a sense is a generalization of the convective derivative to “trajectories” of entire volumes instead of a single
particle).

2 Theorem (Transport theorem). Let V0 ⊆ Ω0 be a region and Vt := Φ(V0, t) ⊆ Ωt. Then we have:

d

dt

∫
Vt

h(x, t) · dx =

∫
Vt

(
∂h

∂t
+ div (hu)

)
(x, t) · dx

3 Conservation of mass
The mass of a volume V0 is conserved with respect to time:∫

Vt

%(x, t) · dx = const

Thus, by the transport theorem we get

0 =

∫
Vt

(
∂%

∂t
+ div (%u)

)
(x, t) · dx

for any volume V0. Thus

0 =
∂%

∂t
+ div (%u)

A fluid is called homogeneous if density does not vary over space. It is called incompressible if density does
not vary over time.

Thus for incompressible, homogeneous fluids we have %(x, t) =: %0 = const, and from the conservation of
mass it follows that u is divergence free (or solenoidal):

div(u) = 0

4 Momentum and forces
The momentum v of a volume V0 is given by

v(t) :=

∫
Vt

%(x, t)u(x, t) · dx

By Newton, the change of momentum is given by the sum of forces acting on the volume, and together with
the transport theorem we have

“sum of forces”

=
d

dt
v(t) =

∫
Vt

∂ (%u)

∂t
+ (div (%uju))j · dx (1)

In the given physical situation, there are the following kinds of forces:

(i) Volume forces, which are given by a volume integral∫
Vt

%(x, t)g(x, t) · dx

(e.g. gravity or other “external” forces, including sources and sinks)
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(ii) Surface forces, which are given by a surface integral∫
∂Vt

σj(x, t) · n(x, t) · dS

where σ =
(
σ1
σ2
σ3

)
is the (symmetric) stress tensor (e.g. pressure, viscous forces or other “internal” forces)

We can express the surface forces by a volume integral (using Gauss’ divergence theorem), and after plugging
the sum of forces into equation (1) (which holds for any volume V0), we see that already the integrands must
agree; that is:

∂ (%u)

∂t
+ (div (%uju))j = %g + div (σ)

where div (σ) is defined row-wise.
From the identity

div (uju) =
∑
k

∂k (ujuk) =
∑
k

(∂kuj)uk + uj
∑
k

∂kuk

= ((u · ∇)u)j + uj div (u)

we see that for an incompressible, homogeneous fluid (which is divergence free) this reduces to:

∂u

∂t
+ (u · ∇)u− 1

%0
div (σ) = g (1)

This is the equation of motion of the velocity field.

Now from physics we know that the stress tensor can be decomposed into a pressure part and a viscosity
part:

σ = −pI︸︷︷︸
pressure

+ τ(∇u)︸ ︷︷ ︸
viscosity

(τ : Ω× [0, T ]→ R is a scalar function.)
For inviscid fluids we have τ = 0, and the equation of motion (1) becomes

∂u

∂t
+ (u · ∇)u+

1

%0
∇p = g

This is called the Euler equation for incompressible, homogeneous, inviscid fluids.

For Newtonian fluids we only know that τ∇u is linear in ∇u, rotationally invariant and symmetric. This
leads to the approximation

τ∇u = λ div (u)︸ ︷︷ ︸
=0

I + µ
1

2

(
∇u+ (∇u)

T
)

(µ is called dynamic viscosity of the fluid). A quick calculation shows that div((∇u)T ) = 0, and we arrive at
the Navier-Stokes equation for incompressible and homogeneous fluids:

∂u

∂t
+ (u · ∇)u+

1

%0
∇p− ν∆u = g

(ν is called kinematic viscosity of the fluid)
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