THE DIRAC DELTA IS NOT IN L^p

1 Lemma. For each $\epsilon \in (0, \frac{1}{2})$ there exists a function $\varphi_{\epsilon} \in C_{c}^{\infty}((0, 2))$ such that:

(i)
$$\varphi_{\epsilon}(1) = 1$$

- (ii) $\operatorname{supp} \varphi_{\epsilon} = B_{\epsilon}(1)$
- (iii) $||\varphi_{\epsilon}||_q \leq 1$ for all $q \in [1, \infty]$

Proof. Let

$$\varphi: \left\{ \begin{array}{c} \mathbb{R} \to \mathbb{R} \\ x \mapsto \begin{cases} \exp(-x^{-1}) & , x > 0 \\ 0 & , x \leqslant 0 \end{cases} \right.$$

We inductively see that $\exp(-\cdot^{-1})$ is infinitely-often differentiable in $\mathbb{R}_{>0}$, and for any $n \in \mathbb{N}_0$ we have

$$\frac{d^n}{dx^n} \exp(-x^{-1}) = \exp(-x^{-1})p(x^{-1})$$

for a certain polynomial $p \in \mathbb{R}[X]$ (use the chain rule). Hence, Calculus tells us that

$$\lim_{x \to 0+} \frac{d^n}{dx^n} \exp(-x^{-1}) = \lim_{y \to \infty} \exp(-y)p(y) = 0$$

and we conclude that $\varphi \in C^{\infty}(\mathbb{R})$.

Now let

$$\varphi_{\epsilon} = (x \mapsto \exp(1) \cdot x) \circ \varphi \circ (x \mapsto 1 - x^2) \circ (x \mapsto \frac{x - 1}{\epsilon})|_{(0, 2)}$$

which is in $C^{\infty}((0,2))$ as a composition of infinitely-often differentiable functions. Note that

$$\varphi_{\epsilon}(1) = \exp(1) \cdot \varphi(1) = 1$$

which shows (i). And from

$$\begin{aligned} \varphi_{\epsilon}(x) &= 0 \\ \Leftrightarrow \left((x \mapsto 1 - x^2) \circ (x \mapsto \frac{x - 1}{\epsilon}) \right)(x) \leqslant 0 \\ \Leftrightarrow |\frac{x - 1}{\epsilon}| \ge 1 \\ \Leftrightarrow x \notin B_{\epsilon}(1) \end{aligned}$$

we see that (ii) holds, and by taking the closure it follows that $\varphi_{\epsilon} \in C_c^{\infty}((0,2))$ for $\epsilon \in (0, \frac{1}{2})$.

It is trivial to see that $||\varphi_{\epsilon}||_{\infty} = 1$, hence for any $q \in [1, \infty)$ we have

$$\int |\varphi_{\epsilon}|^{p} d\lambda^{1} \stackrel{(ii)}{=} \int_{1-\epsilon}^{1+\epsilon} |\varphi_{\epsilon}|^{p} d\lambda^{1} \leqslant 2\epsilon ||\varphi_{\epsilon}||_{\infty} \leqslant 1$$

(and the integral exists since the integrand is measurable and non-negative) and (iii) holds. $\hfill \Box$

2 Remark. In particular, $\varphi_{\epsilon} \in L^q((0,2))$ for all $q \in [1,\infty]$.

3 Theorem. Let $p \in [1, \infty]$. Then there exists no $h \in L^p((0, 2))$ such that

$$\int_{(0,2)} h \cdot \varphi \cdot d\lambda^1 = \varphi(1) \qquad \forall \varphi \in C_c^{\infty}((0,2))$$

Proof. Assume there is an $h \in L^p((0,2))$ with the property above.

Let q be the conjugate of p. Further, let φ_ϵ as in the lemma. Then we have

$$\begin{split} 1 &= |\varphi_{\epsilon}(1)| \\ &= |\int h\varphi_{\epsilon} \ d\lambda^{1}| \leqslant \int |h| \ |\varphi_{\epsilon}| \ d\lambda^{1} = \int |h1_{B_{\epsilon}(1)}| \ |\varphi_{\epsilon}| \ d\lambda^{1} \\ &\leqslant ||h1_{B_{\epsilon}(1)}||_{p} \cdot ||\varphi_{\epsilon}||_{q} \leqslant ||h1_{B_{\epsilon}(1)}||_{p} \\ &= \left(\int |h1_{B_{\epsilon}(1)}|^{p} d\lambda^{1}\right)^{\frac{1}{p}} \xrightarrow{\epsilon \to 0+} 0 \end{split}$$

(note the use of Hölder's inequality; the limit follows from the dominated convergence theorem which is applicable as

$$0 \xleftarrow{a.e.} |h1_{B_{\epsilon}(1)}|^{p} \leqslant |h|^{p}$$

and $|h|^p$ is integrable since $h \in L^p((0,2))$.) Contradiction!