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Java Card DL

modal logic behind

based on a typed first-order logic with subtyping, type
predicates and casts [Gie05]

∀x : Object . x <−Array→ length((Array)x) ≥ 0

we focus only on this first-order part
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Java Generics

classes parametrized by type parameters

public class Array<T>
{
public T last();

}

Array〈T 〉 v Array〈?〉 v Object

what is the signature of last?

{ lastT : Array〈T 〉 → T }
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First-Class Types

{ lastT : Array〈T 〉 → T }

how to reason about arrays without fixing the element type?

single signature

last : Array〈?〉 → >
T : Array〈?〉 → T

with type of all types T
need to assert that the return value has proper type

∀a : Array〈?〉 . last(a) <− T (a)

with binary predicate <−
(; universal types)
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Type Hierarchy

Definition (Type hierarchy)

set of types T
subtype relation v
universal type > and empty
type ⊥
greatest lower bounds (u)

type of all types T

>

T int Object

Array〈?〉

⊥
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Signature

Definition (Signature)

predicate, function and variable symbols with types

predefined symbols:

equality
.

= : >×>
type predicate <− : >× T
subtype predicate v : T× T

type intersection u : T× T→ T
type constants T : → T (for each type T ∈ T )
casts
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Terms and Formulae

Definition (Term of type T )

v if v : T variable symbol

f (t1, . . . , tn) if f : T1 × . . .× Tn → T function symbol,
ti term of type T ′

i v Ti

Definition (Formula)

p(t1, . . . , tn) if . . .

¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ→ ψ

∀v .ϕ, ∃v .ϕ
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Structure

Definition (Structure)

domain D
dynamic typing function δ : D → T

; DT := {x ∈ D : δ(x) v T}

interpretation I of functions and predicates

I(f ) : DT1 × . . .×DTn → DT

I(p) v DT1 × . . .×DTn

how about the predefined symbols?

; value of a term, validity of a formula. . .
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Interpretation

DT = T
predefined symbols shall agree with their type hierarchy
counterpart:

I(<−) 3 (x ,T ) ⇔ x ∈ DT ⇔ δ(x) v T

I(v) = v, I(T ) = T , . . .

Observation

If the type hierarchy is infinite then the logic has no sound and
complete calculus.  
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Completeness and Compactness

Definition ((Strong) completeness)

A |= ϕ ⇒ A ` ϕ

Compactness Theorem

Every logic which has a sound and complete calculus is compact:
If some set of formulae is not satisfiable then there exists a finite
subset which is already not satisfiable.
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Reasons for Noncompactness

two obstructions to compactness

1 constant symbols generate domain of T

{¬(c
.

= T ) : T ∈ T }  

(for infinite T ; compare N)
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Reasons for Noncompactness

2 non-Noetherian type hierarchies

{x<−G 〈?〉, x<−G 〈G 〈?〉〉, . . . ,
¬(x<−⊥)}  

(compare induction)

>

G 〈?〉

G 〈G 〈?〉〉

. . .

⊥

Theorem (Giese)

The logic of [Gie05] has a sound and complete calculus if and only
if the type hierarchy is Noetherian.
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Interpretation – Modified

require DT to be a type hierarchy that contains (T ,v)

predefined symbols shall extend their type hierarchy
counterparts

sanity conditions

Theorem

The modified logic has a sound and complete calculus if and only if
the type hierarchy is Noetherian.
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Conclusion

characterized completeness of the logic of [Gie05]

characterized completeness of first-class types

first-class types are not useful on their own  
; universal types, dependent types
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