Motivation	Syntax	Semantics	Conclusion
000	000	000000	0

A First-Order Logic with First-Class Types

Michael Walter joint work with Peter H. Schmitt and Mattias Ulbrich

Institute for Theoretical Computer Science University of Karlsruhe

The 18th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, 2009

University of Karlsruhe

Motivation	Syntax	Semantics	Conclusion
●00	000	000000	O
JAVA CARD DL			

- modal logic behind KgY
- based on a typed first-order logic with subtyping, type predicates and casts [Gie05]

$$\forall x : \text{Object} : x \models \text{Array} \rightarrow \text{length}((\text{Array})x) \ge 0$$

University of Karlsruhe

• we focus only on this first-order part

Motivation	Syntax	Semantics	Conclusion
●00	000	000000	O
JAVA CARD DL			

- modal logic behind KgY
- based on a typed first-order logic with subtyping, type predicates and casts [Gie05]

$$\forall x : \mathsf{Object} \ . \ x \models \mathsf{Array} \rightarrow \mathsf{length}((\mathsf{Array})x) \ge 0$$

• we focus only on this first-order part

Motivation	Syntax	Semantics	Conclusion
●00	000	000000	O
JAVA CARD DL			

- modal logic behind KgY
- based on a typed first-order logic with subtyping, type predicates and casts [Gie05]

$$\forall x : \text{Object} : x \models \text{Array} \rightarrow \text{length}((\text{Array})x) \ge 0$$

• we focus only on this first-order part

Motivation	Syntax	Semantics	Conclusion
●00	000	000000	O
JAVA CARD DL			

- modal logic behind KgY
- based on a typed first-order logic with subtyping, type predicates and casts [Gie05]

$$\forall x : \text{Object} : x \models \text{Array} \rightarrow \text{length}((\text{Array})x) \ge 0$$

University of Karlsruhe

• we focus only on this first-order part

Motivation	Syntax	Semantics	Conclusion
•00	000	000000	O
JAVA CARD DL			

- modal logic behind KgY
- based on a typed first-order logic with subtyping, type predicates and casts [Gie05]

$$\forall x : \text{Object} : x \in \text{Array} \rightarrow \text{length}((\text{Array})x) \ge 0$$

• we focus only on this first-order part

Motivation	Syntax	Semantics	Conclusion
O●O	000	000000	o
JAVA Generics			

• classes parametrized by type parameters

```
public class Array<T>
{
    public T last();
}
```

• Array $\langle T \rangle \sqsubseteq$ Array $\langle ? \rangle \sqsubseteq$ Object

• what is the signature of last?

 $\{ \mathsf{last}_{\mathcal{T}} : \mathsf{Array}\langle \mathcal{T} \rangle \to \mathcal{T} \}$

- 4 同 1 - 4 日 1 - 日 1 - 日

Motivation	Syntax	Semantics	Conclusion
O●O	000	000000	O
JAVA Generics			

• classes parametrized by type parameters

```
public class Array<T>
ſ
 public T last();
}
```

• Array $\langle T \rangle \sqsubseteq$ Array $\langle ? \rangle \sqsubseteq$ Object

• what is the signature of last?

{ last $_T$: Array $\langle T \rangle \rightarrow T$ }

3 University of Karlsruhe

B b

Motivation	Syntax	Semantics	Conclusion
000	000	000000	0
First-Class Types			

{ last $_{\mathcal{T}}$: Array $\langle \mathcal{T} \rangle \rightarrow \mathcal{T}$ }

how to reason about arrays without fixing the element type?

Motivation	Syntax	Semantics	Conclusion
000	000	000000	0
First-Class Types			

$$\{ \mathsf{last}_{\mathcal{T}} : \mathsf{Array}\langle \mathcal{T} \rangle \to \mathcal{T} \}$$

how to reason about arrays without fixing the element type?

single signature

 $\begin{array}{l} \mathsf{last}:\mathsf{Array}\langle ?\rangle \to \top \\ \mathsf{T}:\mathsf{Array}\langle ?\rangle \to \mathbb{T} \end{array}$

with type of all types \mathbb{T}

• need to assert that the return value has proper type

 $\forall a : \operatorname{Array} \langle ? \rangle$. $\operatorname{last}(a) \equiv T(a)$

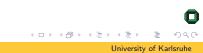
with binary predicate \equiv

```
(\rightsquigarrow universal types)
```

Michael Walter

```
University of Karlsruhe
```

Motivation	Syntax	Semantics	Conclusion
000	000	000000	0
Outline			
Outime			

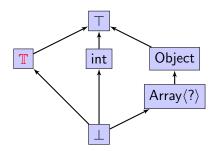


Syntax 000

Type Hierarchy

Definition (Type hierarchy)

- set of types T
- subtype relation \sqsubseteq
- universal type \top and empty type ⊥
- greatest lower bounds (□)
- type of all types \mathbb{T}



э

-

Semantics 000000

Signature

Definition (Signature)

- predicate, function and variable symbols with types
- predefined symbols:
 - equality $\doteq: \top \times \top$ • type predicate $\equiv: \top \times \mathbb{T}$
 - subtype predicate $\Box : \mathbb{T} \times \mathbb{T}$
 - type intersection $\Box : \mathbb{T} \times \mathbb{T} \to \mathbb{T}$
 - type constants $T : \rightarrow \mathbb{T}$
 - casts

(for each type $\mathcal{T} \in \mathcal{T}$)

Motivation	Syntax	Semantics	Conclusion
000	00●	000000	O
Torms and E	armulaa		

Definition (Term of	type <i>T</i>)
• V	if $v : T$ variable symbol
• $f(t_1,\ldots,t_n)$	if $f: T_1 \times \ldots \times T_n \to T$ function symbol, t_i term of type $T'_i \sqsubseteq T_i$

Definition (Formula)

•
$$p(t_1,...,t_n)$$
 if ...

•
$$\neg \varphi$$
, $\varphi \lor \psi$, $\varphi \land \psi$, $\varphi \to \psi$

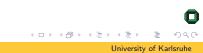
•
$$\forall v.\varphi, \exists v.\varphi$$

E University of Karlsruhe

・ロト ・部ト ・ヨト ・ヨト

590

Motivation	Syntax	Semantics	Conclusion
000	000		O
Outline			



Motivation	Syntax	Semantics	Conclusion
000	000	000000	O
Structure			

Definition (Structure)

- \bullet domain ${\cal D}$
- dynamic typing function $\delta : \mathcal{D} \to \mathcal{T}$

$$\rightsquigarrow \mathcal{D}_{\mathcal{T}} := \{x \in \mathcal{D} : \delta(x) \sqsubseteq \mathcal{T}\}$$

 \bullet interpretation ${\cal I}$ of functions and predicates

$$\mathcal{I}(f): \mathcal{D}_{\mathcal{T}_1} \times \ldots \times \mathcal{D}_{\mathcal{T}_n} \to \mathcal{D}_{\mathcal{T}}$$
$$\mathcal{I}(p) \sqsubseteq \mathcal{D}_{\mathcal{T}_1} \times \ldots \times \mathcal{D}_{\mathcal{T}_n}$$

 \rightsquigarrow value of a term, validity of a formula. . .

Motivation	Syntax	Semantics	Conclusion
000	000	00000	O
Structure			

Definition (Structure)

- $\bullet \ \text{domain} \ \mathcal{D}$
- dynamic typing function $\delta : \mathcal{D} \to \mathcal{T}$

$$\rightsquigarrow \mathcal{D}_{\mathcal{T}} := \{x \in \mathcal{D} : \delta(x) \sqsubseteq \mathcal{T}\}$$

 \bullet interpretation ${\cal I}$ of functions and predicates

$$\mathcal{I}(f): \mathcal{D}_{\mathcal{T}_1} \times \ldots \times \mathcal{D}_{\mathcal{T}_n} \to \mathcal{D}_{\mathcal{T}}$$
$$\mathcal{I}(p) \sqsubseteq \mathcal{D}_{\mathcal{T}_1} \times \ldots \times \mathcal{D}_{\mathcal{T}_n}$$

how about the predefined symbols?

 \rightsquigarrow value of a term, validity of a formula. . .

Motivation	Syntax	Semantics	Conclusion
000	000	00000	0
Interpretation			

 $\bullet \ \mathcal{D}_{\mathbb{T}} = \mathcal{T}$

• predefined symbols shall agree with their type hierarchy counterpart:

$$\mathcal{I}(\sqsubseteq) \ni (x, T) \iff x \in \mathcal{D}_T \iff \delta(x) \sqsubseteq T$$
$$\mathcal{I}(\sqsubseteq) = \sqsubseteq, \ \mathcal{I}(T) = T, \dots$$

Observation

If the type hierarchy is infinite then the logic has no sound and complete calculus. ${\not \! _2}$

3

- ∢ ⊒ →

< 17 ▶

Constant			
000	000	000000	0
Motivation	Syntax	Semantics	Conclusion

Completeness and Compactness

Definition ((Strong) completeness)

$$\mathcal{A} \models \varphi \quad \Rightarrow \quad \mathcal{A} \vdash \varphi$$

Compactness Theorem

Every logic which has a sound and complete calculus is compact: If some set of formulae is not satisfiable then there exists a finite subset which is already not satisfiable.

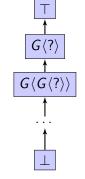
Motivation	Syntax	Semantics	Conclusion
000	000	000000	0
Reasons for	Noncompactness		

two obstructions to compactness

 ${\color{black} 0}$ constant symbols generate domain of ${\mathbb T}$

$$\{\neg(c \doteq T) : T \in T\} \notin$$

(for infinite \mathcal{T} ; compare \mathbb{N})



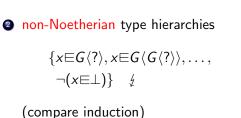
Inon-Noetherian type hierarchies

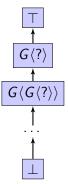
$$\{ x \equiv G \langle ? \rangle, x \equiv G \langle G \langle ? \rangle \rangle, \dots, \\ \neg (x \equiv \bot) \} \notin$$

(compare induction)

Theorem (Giese)

The logic of [Gie05] has a sound and complete calculus if and only if the type hierarchy is Noetherian.





Theorem (Giese)

The logic of [Gie05] has a sound and complete calculus if and only if the type hierarchy is Noetherian.

Motivation	Syntax	Semantics	Conclusion
000	000	000000	0
Interpretation	- Modified		

- \bullet require $\mathcal{D}_{\mathbb{T}}$ to be a type hierarchy that contains $(\mathcal{T},\sqsubseteq)$
- predefined symbols shall extend their type hierarchy counterparts
- sanity conditions

Theorem

The modified logic has a sound and complete calculus if and only if the type hierarchy is Noetherian.

Motivation	Syntax	Semantics	Conclusion
000	000	000000	0
Outline			
Outime			

Conclusion

- characterized completeness of the logic of [Gie05]
- characterized completeness of first-class types
- first-class types are not useful on their own $\frac{1}{2}$ \sim universal types, dependent types

3

< □ > < 同 >

Motivation	Syntax	Semantics	Conclusion
000	000	000000	•

Martin Giese.

A Calculus for Type Predicates and Type Coercion. In Bernhard Becker, editor, *Proceedings of the 14th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2005)*, Lecture Notes in Artificial Intelligence, pages 123–137. Springer, 2005.

