
A First-Order Logic with First-Class Types

Peter H. Schmitt, Mattias Ulbrich, and Michael Walter

University of Karlsruhe
Institute for Theoretical Computer Science

D-76128 Karlsruhe, Germany
{pschmitt,mulbrich}@ira.uka.de, michael.walter@gmail.com

Abstract. This paper presents a strongly complete calculus for a first-
order statically-typed predicate logic with first-class types, type predi-
cates and casts, provided that the type hierarchy is Noetherian. We show
that this restriction cannot be relaxed.

1 Introduction

In traditional Mathematical Logic, typed first-order logic or, as it was mostly
called, many-sorted first-order logic played only a marginal role. The fact that it
could in principle be reduced to first-order logic with unary type predicates was
excuse enough to pass over it. This started to change when logic turned into an
intrinsic topic in Computer Science. It became apparent that the use of types
could provide useful guidance for proof search in automated theorem proving.
This triggered papers like [1–5]. More recently formal verification of object-
oriented programs provided an additional motivation to develop typed first-
order calculi. A calculus tailored towards reasoning about typed Java programs
including instanceof predicates and cast functions but no generic types was
developed by Martin Giese in [6] and is successfully used within the KeY system
[7, 8]. A first investigation into the logical issues involved in the verification of
object-oriented programs with generic types was done in [9].

The aim of this paper is to extend the logic from [6] so that the type hi-
erarchy is part of the domain. Thus types are first-class values which can be
subjects of formulae; in particular, they can be quantified over. Our logic has
a sound and complete calculus if and only if the type hierarchy is Noetherian;
completeness is to be understood as strong completeness, i.e., the calculus will
derive all correct semantical consequences from arbitrary sets of assumptions
and not only tautologies. This will follow from an axiomatization in the theory
of [6] for which we will prove a similar characterization generalizing the main
theorem of that paper.

Outline. This paper is structured as follows. In Subsection 2.1–2.3 we present
the first-order statically-typed predicate logic TFOL with first-class types, type
predicates and casts. In Subsection 2.4 we review the results from [6] and prove
the necessary generalization. Finally Subsection 2.5 covers the main axiomatiza-
tion results of this paper. Section 3 presents a way to turn this axiomatization

into a more efficient tableau calculus. Section 4 evaluates possible applications
and points out future work, and we wrap up with conclusions in the last section.

Prerequisites. In the following we will make repeated use of the well-known
fact that every logic with a sound and complete calculus is compact; we will
refer to this fact as the compactness theorem.

2 A Logic with First-Class Types

2.1 Types

As the symbols in our signatures will be statically typed, we first need to clarify
our notions of types and type hierarchies. The following definition is inspired by
[6] and [7].

Definition 1 (Type hierarchy). A type hierarchy is a set T (the set of types)
together with a partial order v (the subtype relation) such that

– T is closed under (finite) greatest lower bounds, written A u B (also called
the intersection type of A and B)

– there is an empty type ⊥ ∈ T and a universal type > ∈ T such that

⊥ v A v > ∀A ∈ T

– there is a type of all types T ∈ T different from ⊥ and > such that the chain

⊥ v T v >

cannot be refined

We say that A is a subtype of B if A v B. In that situation we also call B
a supertype of A; this defines the supertype relation w. Note that we do not
require the set of types to be finite.

We call two type hierarchies equivalent if there is a bijection respecting the
subtype relation which maps the special types to their respective counterparts.

Remark 2 (Java type hierarchies). Given a Java program there is a natural way
of defining a type hierarchy (in the sense of our definition) which preserves the
class hierarchy: Take the class hierarchy, add new types > and ⊥ and adjoin all
value types as well as T as siblings of the class hierarchy (see the KeY book [8,
pp. 24–25] for the details which are slightly more involved).

The following property will later turn out to be a sensible restriction assuring
completeness of our calculus.

Definition 3 (Noetherian type hierarchy). A type hierarchy (T ,v) is called
Noetherian if every infinite descending chain eventually becomes stationary. That
is, for every chain

A0 w A1 w . . .

there exists n0 ∈ N0 such that An = An0 for all n ≥ n0.

Remark 4. Java generic classes (as introduced in version 5 of the program-
ming language) inherently lead to non-Noetherian type systems. Indeed, any
unbounded generic class G<T> leads to an infinite descending proper chain

> w G<?> w G<G<?>> w . . .

Even without wildcard parametrizations we still have an infinite descending
proper chain

Object w Object[] w Object[][] w . . .

In both cases Java Generics provide us with a way to actually make use of an
unbounded number of these types at runtime (see the example of [9, pp. 82–83]).
We will get back later to discussing this issue in section 4.

Let us now fix an arbitrary type hierarchy (T ,v) for the remainder of this
section.

2.2 Syntax

Definition 5 (Signature). A signature for our logic consists of (disjoint) sets
of variable, function and predicate symbols. Variable symbols have a type, func-
tion symbols have both argument types and a result type, and predicate sym-
bols have just argument types; we write v : A, f : A1 × . . . × An → A and
p : A1 × . . . × An, respectively. A function symbol without any arguments is
called a constant symbol.

We require that the empty type ⊥ does neither occur as the type of a variable
symbol nor as the result type of a function symbol.

Furthermore, the signature shall contain the following reserved symbols:

– .= : >×>, the equality predicate symbol,
– @− : >× T, the type predicate symbol,
– v : T× T, the subtype predicate symbol,
– u : T× T→ T, the type intersection function, and
– castA : > → A, the type cast function symbols, for every type ⊥ 6= A ∈ T ,
– constant symbols A :→ T for every type A ∈ T

In addition, there shall be an infinite number of constant and variable symbols
of every type except ⊥ (this is a usual requirement for tableau calculi to work).

Remark 6. We did not introduce a binary cast function symbol since it cannot
be given a useful type without the sophisticated machinery of dependent types.
Indeed, the only signature we could assign to such a function in our framework
is cast : T×> → >, but then we could not use an expression like cast(A, x) in
places where a term of static type A is expected.

Let us now also fix a signature for the remainder of this section.

Definition 7 (Term). The system of sets {TA}A∈T \{⊥} of terms of static type
A is the least system of sets such that

– v ∈ TA for any variable symbol v : A,
– f(t1, . . . , tn) ∈ TA for any function symbol f : A1× . . .×An → A and terms
ti ∈ TA′

i
with A′i v Ai.

The static type of a term t ∈ TA is designated by σ(t) := A. Note that there are
no terms of static type ⊥ (by definition of the signature).

A subterm of a term is inductively defined as follows: Every term is a subterm
of itself, and subterms of the arguments ti are subterms of the entire term as
well.

Definition 8 (Formula). The set of formulae F is the least set such that

– p(t1, . . . , tn) ∈ F for any predicate symbol p : A1 × . . . × An and terms
ti ∈ TA′

i
with A′i v Ai,

– ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ→ ψ ∈ F for any two formulae ϕ, ψ ∈ F ,
– ∀v.ϕ, ∃v.ϕ for any variable symbol v : A and formula ϕ ∈ F .

Notation 9. We shall use infix notation where customary (unless there is danger
of confusion), e.g., we will write t@−A instead of @−(t, A). In addition, we will
write casts using the Javaesque notation (A)t instead of castA(t). Finally, when
we write ↔, we always mean the obvious expansion in terms of →.

2.3 Semantics

Definition 10 (Structure). A structure S = (D, δ, I) consists of a domain of
values of terms, a typing function δ and an interpretation I of symbols in the
signature.

The typing function assigns δ : D → T assigns to every domain element
x ∈ D its dynamic type δ(x) ∈ T . We define the set of domain elements of
subtype of A ∈ T as

DA := {x ∈ D : δ(x) v A} .

An element of DA is called an instance of type A.
We require D⊥ = ∅ and DA 6= ∅ for all other types ⊥ 6= A ∈ T . The

motivation behind these requirements is twofold: First, they imply DT ∩ DA =
D⊥ = ∅ for every type A 6= >,T, which is sensible. Second, they guarantee that
universal quantification is never trivial (there are no variables of type ⊥); this
avoids certain technicalities for the tableau calculus.

The interpretation of a function symbol f : A1 × . . . × An → A shall be a
function

I(f) : DA1 × . . .×DAn
→ DA .

Likewise, to every predicate symbol p : A1× . . .×An there is assigned a relation

I(p) ⊆ DA1 × . . .×DAn .

The predefined symbols have to satisfy the following requirements:

1. I(.=) = {(x, x) : x ∈ D}
2. (DT, I(v)) is a type hierarchy with empty type I(⊥), universal type I(>),

type of all types I(T) and intersection types given by I(u)
3. The interpretation mapping I : T → DT is an injection, and

A v B ⇔ (I(A), I(B)) ∈ I(v) (∀A,B ∈ T)

4. Greatest lower bounds in I(T) are greatest lower bounds in DT, i.e.

I(A uB) = I(u)(I(A), I(B)) (∀A,B ∈ T)

5. Type predicates are compatible with the structure:

I(@−)|D×I(T) =
⋃
A∈T
DA × {I(A)}

6. Type predicates respect the subtype relation:

(a, b) ∈ I(v)⇒ ((x, a) ∈ I(@−)⇒ (x, b) ∈ I(@−))
(x, a), (x, b) ∈ I(@−)⇒ (x, I(u)(a, b)) ∈ I(@−)

for all x ∈ D and a, b ∈ DT
7. Type casts are compatible with the structure:

I(castA)|DA
= idDA

and I(castA)(D) ⊆ DA

for all types ⊥ 6= A ∈ T

Remark 11. Informally stated, we require DT to be a type hierarchy containing
T and that the built-ins agree and/or behave sane on D and T ; such structures
actually exist since there are always structures with DT = T (such that the
built-ins agree with their meta-level counterparts).

On the other hand,it is not obvious why we did not simply require the do-
main of types to be equal to T . We will see in Remark 17 that doing so would
immediately imply the nonexistence of a sound and complete calculus for our
logic. This is the motivation for our more “open” interpretation.

We did not assign an interpretation to variable symbols; this is taken care of by
the following definition.

Definition 12 (Variable assignment). A variable assignment with respect to
a given structure is a map β assigning a domain element β(v) ∈ DA to every
variable symbol v : A in the signature.

We denote by βxv the modification of β which assigns x ∈ DA to v : A.

Definition 13 (Value). We inductively define the value of a term t with respect
to a structure S = (D, δ, I) and variable assignment β as follows.

valS,β(v) := β(v)
valS,β(f(t1, . . . , tn)) := I(f)(valS,β(t1), . . . , valS,β(tn))

We simply write valS(t) if t is a ground term.

The following proposition shows that our semantics respects static typing; it is
easily proved via structural induction.

Proposition 14. Let S = (D, δ, I) be a structure, β a variable assignment and
t a term. Then

δ(valS,β(t)) v σ(t) .

Definition 15 (Validity). We inductively define validity of a formula with
respect to a structure S = (D, δ, I) and variable assignment β as follows.

S, β |= p(t1, . . . , tn) :⇔ (valS,β(t1), . . . , valS,β(tn)) ∈ I(p)
S, β |= ¬ϕ :⇔ S, β 6|= ϕ

S, β |= ϕ ∨ ψ :⇔ (S, β |= ϕ) or (S, β |= ψ)
S, β |= ϕ ∧ ψ :⇔ (S, β |= ϕ) and (S, β |= ψ)
S, β |= ϕ→ ψ :⇔ (S, β |= ϕ) implies (S, β |= ψ)
S, β |= ∀v.ϕ :⇔ for all x ∈ Dσ(v) we have S, βxv |= ϕ

S, β |= ∃v.ϕ :⇔ there exists x ∈ Dσ(v) such that S, βxv |= ϕ

We simply write S |= ϕ if ϕ is a closed formula. In this case we also say that S
satisfies ϕ.

Let A be a set of closed formulae. We say that ϕ follows from the assumptions
A, written A |= ϕ, if it is valid in all structures that satisfy all of the assumptions.

Definition 16 (TFOL). Our definitions of formulae (Def. 8), structures (Def.
10) and validity (Def. 15) define a logic which we will denote by TFOL.

Remark 17. We will now make precise Remark 11. Consider the fixed logic
TFOLfix which is defined as the modification of TFOL such that the domain of
types is fixed to be identical to the type hierarchy. More precisely, we require that
I : T → DT is a bijection. Now fix any infinite type hierarchy T and signature.
Let c : T be a constant symbol. Then

Φ := {¬(c .= A) : A ∈ T }

is an unsatisfiable set of TFOLfix formulae (since the constant symbols generate
the domain of type T), but every finite subset of it is satisfiable (choose any type
not excluded by the subset). In view of the compactness theorem, we have thus
proved the following theorem.

Theorem 18. For an arbitrary infinite type hierarchy there is no calculus for
TFOLfix which is both sound and complete.

For our logic though we will be able to show that it is axiomatizable in another
first-order logic (Thm. 27) which in turn can be shown to be sound and complete
for a broad set of type hierarchies (Thm. 23); this will yield a sound and complete
calculus for TFOL (Cor. 28).

2.4 Extended logic and Giese’s logic

In this rather technical subsection we will extend our logic such that it contains
(a slight modification of) Giese’s logic from [6].

Definition 19 (Extended logic). We define the extended logic TFOL? to be
the logic TFOL with the following modifications: Signatures shall contain the
unary type predicate symbols @−A : > for every type A ∈ T , and every structure
S = (D, δ, I) has to assign the interpretation I(@−A) = DA.

Remark 20. The logic TFOL? thus defined is a definitional extension of TFOL.
Indeed, TFOL? type hierarchies and signatures are TFOL type hierarchies and
signatures, respectively, and it is easy to see that a TFOL structure is a TFOL?

structure if and only if it satisfies the following set of axioms:

Ψ := {∀v.@−A(v)↔ @−(v,A) : A ∈ T }

The following lemma follows easily from this axiomatization.

Lemma 21. There is a sound and complete calculus for TFOL if and only if
there is a sound and complete calculus for TFOL?.

Proof. (⇒) Fix a TFOL? type hierarchy and signature and let ϕ be a single
and A an arbitrary set of TFOL? formulae. By the preceding remark we see
that A |=TFOL? ϕ if and only if Ψ ∪ A |=TFOL ϕ. But this means that, given
a sound and complete calculus for TFOL, we can define a sound and complete
calculus for TFOL? as follows:

A `TFOL? ϕ :⇔ Ψ ∪ A `TFOL ϕ

(⇐) Since we can always rename symbols in the given TFOL signature such
that it does not contain the unary type predicate symbols, the claim is obvious:
Adjoin the unary type predicate symbols such that we also have a TFOL?

signature. Then given a TFOL formula for the original signature, there is a
unique way of extending a TFOL model to a TFOL? model, and conversely,
every TFOL? model for ϕ is a TFOL model by restriction. Hence, we can simply
use the sound and complete TFOL? calculus which is assumed to exist. ut

We will now give a proper definition of our variant of Giese’s first-order logic
with subtyping from [6].

Definition 22 (Giese’s logic). Giese’s logic which we will designate by TFOL0

is just the logic TFOL? with the following modifications:

– Type hierarchies need not contain the empty type ⊥ nor the universal type
> nor a type of all types T.

– Signatures only need to contain the equality predicate .= and the unary type
predicates @−A and casts castA.

– Interpretations are predefined only for these symbols.

The following theorem is a generalization of the completeness theorem from [6].

Theorem 23 (Soundness and completeness for TFOL0). There is a sound
and complete calculus for TFOL0 and Noetherian type hierarchies.

More precisely, if we fix a Noetherian TFOL0 type hierarchy and signature
we have the following: A formula ϕ follows from a set of assumptions A if and
only if it can be proved using the calculus:

A |=TFOL0 ϕ ⇔ A `TFOL0 ϕ

Proof. In [6] Giese defines a first-order logic with subtyping. Let us take this
logic, remove the cast to ⊥ and require D⊥ = ∅. The resulting logic (for our
fixed type hierarchy and signature) is just TFOL0.

In that paper Giese also presents a tableau calculus and demonstrates its
weak completeness (that is, for the case A = ∅). The calculus is still sound for
TFOL0 (since we have no variables of type ⊥, we do not run into trouble by
quantifying over an empty domain). Now let us add to his calculus the following
rules:

t@−⊥
ut close-⊥ ϕ assumption

for every assumption ϕ ∈ A. Soundness of these rules and hence of the resulting
calculus is evident.

It remains to prove that our calculus is complete. That is, we have to show
the following (recall that tableau calculi are used to prove unsatisfiability):

If there is no closed tableau for ¬ϕ, then there is a model for A∪ {¬ϕ},
i.e. A 6|= ϕ

We will now sketch the modifications needed to make Giese’s completeness proof
[6, §4, pp. 129–137] work in our extended setting (using his terminology).

(i) The assumption that “there will still always be only finitely many types
in a tableau” [6, pp. 130] no longer needs to be true in our setting. But since our
type hierarchy is assumed to be Noetherian, the definition of the most specific
known type κH(t) is still valid:

Let H be a type-saturated tableau and t be a term in H. Define

K := {A ∈ T : t@−A ∈ H}

We need to show that there is a minimum with respect to v; it will be
unique since v is a partial order.
By saturation with respect to type-static, we have σ(t) ∈ K, hence
K 6= ∅. Thus, we can choose A0 ∈ K. If A0 is a minimum, we are done.
Otherwise there is A1 ∈ K such that A0 6v A1. By saturation with
respect to type-u, we have A0uA1 ∈ K. Also, A0uA1 must be a proper
subtype of A0 (otherwise A0 = A0 uA1 v A1, contradiction). It is clear
how to continue this construction inductively.

Now, if none of the intersection types were a minimum, we would arrive
at an infinite descending proper chain of types

A0 w A0 uA1 w A0 uA1 uA2 w . . .

But this is a contradiction.

In particular, t@−κH(t) ∈ H for every term t in a type-saturated tableau H.
(ii) We modify [6, Def. 7] such that a saturated branch now also has to (1)

invoke the apply-⊥ rule whenever it is possible and (2) contain all assumptions
A ∈ A.

(iii) By (i) we see that a term t will still always be equipped with a su-
perscript cast for its most specific known type κH(t) (as stated in [6, p. 131]).
Consequently, all proofs still work out the same.

(iv) In particular, [6, Lemma 1] together with (ii) guarantees that normalized
terms on open saturated branches are never equipped with a superscript cast to
⊥. It follows that the domain of the model S constructed in the proof satisfies
D⊥ = ∅; thus it is a structure in the sense of TFOL0.

(v) Finally, in the claim of the model lemma [6, Lemma 7] we can also state
that S is a model for A. This is evident since S is a model for the saturated
tableau branch H, and we have A ⊆ H by (ii). ut

Example 24. On the other hand let us consider a TFOL0 type hierarchy which
is not Noetherian. Then there is an infinite descending proper chain of types

A0 w A1 w A2 w . . .

Suppose the set of common subtypes

B := {B ∈ T : B v An ∀n ∈ N0}

is nonempty (in particular, this is the case if there is an empty type ⊥). Then
the infinite set of formulae Γ := Γ1 ∪ Γ2 with

Γ1 := {c@−An : n ∈ N0} and Γ2 := {¬(c@−B) : B ∈ B}

(where c : A0 is a constant) has no model. Indeed, suppose S = (D, δ, I) is such
a model. Then in particular S is a model for Γ1, thus δ(I(c)) ∈ B. But this
contradicts Γ2.

On the other hand it is clear that every finite subset of Γ is satisfiable. Thus
by the compactness theorem there is no a calculus which is both sound and
complete.

The preceding example shows that for a broad range of type hierarchies Noethe-
rianity also is a necessary condition. In summary:

Corollary 25 (Characterization of the existence of a sound and com-
plete calculus for TFOL0). Suppose the type hierarchy contains an empty
type ⊥. Then there is a sound and complete calculus for TFOL0 if and only if
the type hierarchy is Noetherian.

Remark 26. It follows using the same technique as in Lemma 21 that if we can
axiomatize a logic in TFOL0, then this logic also has a sound and complete
calculus; we use this idea in the following subsection.

But another consequence is the following: In view of Remark 17 this also
means that although so far we have not ruled out the existence of a sound and
weakly complete calculus for TFOLfix, there is no hope of arriving at such a
calculus by axiomatization in TFOL0. This is another indication that the fixed
semantics are too restricting.

2.5 Axiomatization

In this subsection we axiomatize the extended logic in Giese’s logic. As a con-
sequence we will be able to characterize the existence of a sound and complete
calculus for TFOL.

Theorem 27 (Axiomatization of TFOL? in TFOL0). The extended logic
TFOL? can be axiomatized using the (possibly infinite) set TFOL0 formulae
Φ := Φ2 ∪ . . . ∪ Φ6 with

Φ2 :={∀v.∀w.∀x.v v v ∧ (v v w ∧ w v x→ v v x) ∧ (v v w ∧ w v v → v
.= w)}

∪{∀v.∀w. u (v, w) v v ∧ u(v, w) v w ∧ (∀x.x v v ∧ x v w → x v u(v, w))}
∪{∀v.⊥ v v ∧ v v >}
∪{∀v.(v v T→ v

.= ⊥ ∧ v .= T) ∧ (T v v → v
.= T ∧ v .= >)}

Φ3 :={A v B : A,B ∈ T with A v B} ∪ {¬(A v B) : A,B ∈ T with A 6v B}
∪{¬(A .= B) : A 6= B ∈ T }

Φ4 :={A uB = C : A,B ∈ T and C := A uB}
Φ5 :={∀z.@−(z,A)↔ @−A(z)}
Φ6 :={∀v.∀w.v v w → (∀z.z@−v → z@−w)}
∪{∀v.∀w.∀z.z@−v ∧ z@−w → z@−v u w}

where v, w, x : T, z : > and zA : A are variable symbols (A ∈ T).
More precisely, fix a TFOL? type hierarchy and signature. Then a TFOL0

structure satisfies Φ if and only if it is a TFOL? structure.

Proof. First note that by definition every TFOL? type hierarchy and signature
is a TFOL0 type hierarchy and signature, respectively. Hence, the statement of
the theorem makes sense.

It is now easy (but quite lengthy) to check that each set of axioms Φn corre-
sponds to the respective item n in Def. 10 (n = 2, . . . , 6); items 1 and 7 already
hold in Giese’s logic. ut
The following diagram summarizes what we have achieved so far:

TFOL?
axiomatizable

**TTTTTTTT

TFOL

def. extension
88pppppppp

TFOL0

sound and complete calculus

The main result of this section now follows as an easy corollary.

Corollary 28 (Characterization of the existence of a sound and com-
plete calculus for TFOL). There exists a sound and complete calculus for
TFOL if and only if the type hierarchy is Noetherian.

Proof. In view of Thm. 23 and Lemma 21 it is sufficient to prove that there is a
sound and complete calculus for TFOL? if and only if there is such a calculus
for TFOL0. But this follows from the preceding theorem using a completely
analogous construction to the one in the proof of Lemma 21. ut

Remark 29. We would like to emphasize two aspects about this theorem. First,
the equivalence shows that our results are optimal. Second, although they are
phrased as existence statements, the proofs we have given are actually construc-
tive in the sense that they show how to define a sound and complete calculus
for TFOL.

This calculus is not very efficient, though (it only instantiates the TFOL
axioms via the assumption rule from the proof of Thm. 23). In the next section
we will present a more efficient tableau calculus which is still sound and complete.

3 A Tableau Calculus

Notation. We use the usual notation in our presentation of the tableau calculus
below. Note that many rules are specified using rule schemata where schema
variables s, t, u, . . . stand for arbitrary ground terms of proper type.

In order to simplify the presentation we identify the formulae t .= u and u .= t
and the terms t u u and u u t, respectively.

Theorem 30 (Soundness and completeness). The tableau calculus given in
Fig. 1 and 2 is sound and complete for Noetherian type systems.

Proof. We will only show completeness; soundness is easily verified by inspection
of the individual rules.

(i) The proof of Thm. 23 essentially shows that the rules in Fig. 1 constitute a
complete calculus for TFOL0. Indeed, we were able to modify the completeness
proof from Giese [6] such that for every open tableau branch H which was
saturated in a certain sense, we could construct a TFOL0 structure S = (D, δ, I)
which was a model for H. Now recall that the domain was defined in the style
of Herbrand such that it consists of normalized ground terms

D := NormH/ ∼

modulo an equivalence relation

t ∼ u :⇔ t
.= u or t .= u ∈ H

identifying terms which are required to be equal by the tableau branch. And the
interpretation of predicate symbols was defined as follows:

([t1], . . . , [tn]) ∈ I(p) :⇔ p(t1, . . . , tn) ∈ H

ϕ ∧ ψ
ϕ, ψ

α
ϕ ∨ ψ
ϕ ψ

β

∀x.ϕ
[x/t](ϕ)

γ
∃x.ϕ

[x/c](ϕ)
δ

with t ∈ TA ground, if x : A. with a new constant c : A, if x : A.

[z/t1](ϕ), t1
.
= t2

[z/t2](ϕ)
apply-

.
=

[z/t1](ϕ), t1
.
= t2

[z/(A)t2](ϕ)
apply-

.
=′

if σ(t2) v σ(t1). where A := σ(t1).

t1
.
= t2

t2 @−σ(t1), t1 @−σ(t2)
type-

.
=

t@−σ(t)
type-static

t@− t1, t@− t2
t@− t1 u t2

type-@−-u

[z/t](ϕ), t@−A
[z/(A)t](ϕ)

cast-add
[z/(A)t](ϕ)

[z/t](ϕ)
cast-del

if A v σ(t). if σ(t) v A.

(¬)(A)t@−B, t@−A
(¬)t@−B

cast-type

t@−A, ¬(t@−B)

ut close-v
¬(t

.
= t)

ut close-
.
=

if A v B.

t@−⊥
ut close-⊥

ϕ, ¬ϕ
ut close

ϕ assumption

if ϕ ∈ A.

Fig. 1. Rules of our tableau calculus (part i)

t v t
type-refl

t v u, u v v
t v v

type-trans

t v u, u v t
t
.
= u

type-antisym

⊥ v t
type-⊥

t v >
type->

t u u v t
type-u

t v u, t v v
t v u u v

type-v-u

T v t
t
.
= T t

.
= >

type-T v
t v T

t
.
= ⊥ t

.
= T

type-v T

A
.
= B
ut close-type-

.
=

A v B
ut close-type-v

if A 6= B ∈ T . if A 6v B for A,B ∈ T .

A v B
type-v

A u B .
= C

type-u-T

if A v B for A,B ∈ T . where C := A u B for A,B ∈ T .

t@−x, x v y
t@−y

type-@−-v

Fig. 2. Rules of our tableau calculus (part ii)

(see [6] for details).
(ii) Let us now suppose that the tableau branch is also saturated with respect

to the rules in Fig. 2. We will now show that this implies that S is even a TFOL
structure. This in turn proves completeness of our calculus.

(iii) First of all, note that Giese’s construction already ensures proper in-
terpretation of the equality and cast symbols since these have their predefined
meaning already in TFOL0. That is, requirements 1 and 7 hold.

(iv) From saturation with respect to type-refl, type-trans, type-antisym, type-
⊥, type->, type-u, type-v-u, type-T v and type-v T, it follows that (DT, I(v))
is a type system with empty type I(⊥), universal type I(>), intersection types
given by I(u) and type of all types I(T). That is, requirement 2 holds as well.

(v) Requirements 3 and 4 are satisfied by saturation with respect to close-
type- .=, close-type-v, type-v and type-u-T .

(vi) In Giese’s construction the dynamic type of a domain value [t] is given
by its most specifically known static type κH(t). We have seen in the proof of
Thm. 23 that the formula t@−κH(t) is actually on the tableau branch H. Thus,
requirement 5 follows from saturation with respect to type-v and type-@−-v.

(vii) Finally, we see that requirement 6 holds by saturation with respect to
type-@−-v and type-@−-u. ut

4 Applications and Future Work

Program Specification and Verification. In the context of specification and
verification of programs written in a programming language with subtypes one
would like to be able to reason about the type of expressions, e.g. in order to
enforce dynamic type safety. As an example, suppose we are able to establish
the following formula as an invariant for a system:

∀t.o1@− t↔ o2@− t

Then the dynamic type of two objects o1 and o2 is the same. In particular,
if we are now able to show that some code is type-safe for o1 then it follows
that it is also type-safe for o2. Some specification languages, such as the Java
Modelling Language [10], have built-in means to express such and similar type
relationships.

Generics and Noetherianity. We have seen in Rem. 4 that Java generics
lead to non-Noetherian type hierarchies if wildcard parametrization is allowed.
Nonetheless, parametric polymorphism is a major motivation behind our efforts
on TFOL. Fortunately, it turns out that wildcard parametrization and exis-
tential types are very closely related: The proper subtypes of a wildcard type
G<?> are just the subtypes of G<T> for arbitrary type T (cf. [11]). This suggests
the following way of modeling Java type hierarchies with generics (for simplic-
ity we assume that there is only a single generic class G with a single generic
parameters):

1. Add all types to the type hierarchy, except for wildcard and array types. In
particular, for every type T there are types G<T> in the type hierarchy and
constant symbol G<T> : T in the signature.

2. Introduce a function symbol G : T→ T and a constant symbol G<?> : T.
3. Extend the axiomatization so that (i) G<T> and G(T) are identified, (ii) G<?>

has the proper set of supertypes, and (iii) the following formula holds:

∀x. (x v G<?> ∧ ¬x .= G<?>↔ ∃t.x v G(t))

We thus end up with a Noetherian approximation of the original Java type
hierarchy, and the results of this paper are applicable.

Dependent Types. First-class types suggest the use of functions with a type
parameter instead of function families (as in the case of cast, cf. Rem. 6). But
often return types or other parameters’ types depend on the value of this type
parameter, thus requiring the machinery of dependent types. For instance, a
binary cast symbol should have the following signature:

cast : Πt : T. Πx :>. t

(using a syntax inspired by Martin-Löf’s intuitionistic type theory [12]). In [13]
Rabe has proposed a calculus for first-order logic with dependent types (DFOL).
It should be investigated whether the benefits of TFOL and DFOL could be
combined.

Completeness Gap. The calculus in Sect. 3 is also sound for the logic TFOLfix

where the domain of types is fixed to be equal to the type hierarchy. There are
however formulae which hold in every such struture but cease to be tautologies
with respect to TFOL. The structure of this resulting completeness gap should
be investigated further since it provides information about tautologies of the
fixed logic that cannot be proved using our calculus. This would allow the design
of a calculus for TFOLfix which is “sufficiently complete” for most applications.

5 Conclusion

In this paper we have introduced a statically typed logic TFOL in which the type
hierarchy is part of the domain, and hence, types can be subjects of formulae.

Fixing the domain of types inevitably leads to an incompact logic. Therefore,
we have opted for an open interpretation in which we only require the type
hierarchy to be contained in the domain of types. We have shown that the set of
type hierarchies for which the resulting logic has a sound and complete calculus is
precisely the set of Noetherian type hierarchies. In fact, we could show a similar
characterization for the logic of [6]; the result for TFOL then followed from an
axiomatization in that logic. In Table 1 we compare the logics defined in this
paper with previous work.

We have also presented a sound and complete tableau calculus which is more
efficient than the one resulting directly from the axiomatization.

Table 1. Comparison of our logic with previous work

Logic Equality Subtyping @− and casts First-class types Complete calculus

Sorted FOL [1] × ×
TFOL0 [6] × × × ×1

TFOLfix × × × × 2

TFOL × × × × ×1

1 for Noetherian type systems (this is optimal; Cor. 25, 28) 2 inevitably so (Thm. 18)

References

1. Schmitt, P.H., Wernecke, W.: Tableau calculus for order sorted logic. [4] 49–60
2. Weidenbach, C.: First-order tableaux with sorts. Journal of the Interest Group in

Pure and Applied Logics, IGPL 3(6) (1995) 887–906
3. Kifer, M., Wu, J.: A first-order theory of types and polymorphism in logic pro-

gramming. Technical report, Department of Computer Science, University at Stony
Brook (1991)

4. Bläsius, K.H., Hedtstück, U., Rollinger, C.R., eds.: Sorts and Types in Artificial
Intelligence. Volume 418 of Lecture Notes in Ariticial Intelligence. Springer (1990)

5. Walther, C.: Many-sorted inferences in automated theorem proving. [4] 18–48
6. Giese, M.: A Calculus for Type Predicates and Type Coercion. In Becker, B., ed.:

Tableau 2005, Springer (2005) 123–137
7. Beckert, B., Hähnle, R., Schmitt, P.H., eds.: Verification of Object-Oriented Soft-

ware: The KeY Approach. LNCS 4334. Springer-Verlag (2007)
8. Giese, M.: First-order logic. [7] 21–68
9. Ulbrich, M.: Software Verification for Java 5. Diploma thesis, Universität Karlsruhe

(2007)
10. Leavens, G.T., k, Poll, E., Ruby, C., Jacobs, B.: JML: Notations and tools sup-

porting detailed design in Java. Technical Report 00-15, Department of Computer
Science, Iowa State University (August 2000)

11. Cameron, N., Ernst, E., Drossopoulou, S.: Towards an Existential Types Model
for Java Wildcards. In: Formal Techniques for Java-like Programs. (2007)

12. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis (1984)
13. Rabe, F.: First-order logic with dependent types. In: Automated Reasoning,

Springer (2006) 377–391

